
Sabir khan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9363225/publications.pdf Version: 2024-02-01

SARID KHAN

#	Article	IF	CITATIONS
1	Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition, 2022, 62, 6932-6946.	10.3	39
2	Multi-object optimization of Navy-blue anodic oxidation via response surface models assisted with statistical and machine learning techniques. Chemosphere, 2022, 291, 132818.	8.2	14
3	Probing the chemical constituents of <i>Cassia javanica</i> and its <i>in vitro</i> analyses as a potent drug. Royal Society Open Science, 2022, 9, 211626.	2.4	2
4	Non-toxic nature of nano-biosorbents as a positive approach toward green environment. , 2022, , 187-226.		0
5	Surface facet Fe2O3-based visible light photocatalytic activation of persulfate for the removal of RR120 dye: nonlinear modeling and optimization. Environmental Science and Pollution Research, 2022, 29, 51651-51664.	5.3	5
6	Core-shell magnetic molecularly imprinted polymer for selective recognition and detection of sunset yellow in aqueous environment and real samples. Environmental Research, 2022, 212, 113209.	7.5	19
7	Using Carbon Paste Electrode Modified with Ion Imprinted Polymer and MWCNT for Electrochemical Quantification of Methylmercury in Natural Water Samples. Biosensors, 2022, 12, 376.	4.7	1
8	Evaluation of the performance of a selective magnetite molecularly imprinted polymer for extraction of quercetin from onion samples. Microchemical Journal, 2021, 162, 105849.	4.5	13
9	A spot test for direct quantification of acid green 16 adsorbed on a molecularly imprinted polymer through diffuse reflectance measurements. Analytical Methods, 2021, 13, 453-461.	2.7	2
10	Molecularly imprinted polymer composites as sensor. , 2021, , 227-265.		1
11	Systematic study on the synthesis of novel ion-imprinted polymers based on rhodizonate for the highly selective removal of Pb(II). Reactive and Functional Polymers, 2021, 159, 104805.	4.1	6
12	Voltammetric sensing of glyphosate in different samples using carbon paste electrode modified with biochar and copper(II) hexadecafluoro-29H,31 phtalocyanine complex. Journal of Applied Electrochemistry, 2021, 51, 761-768.	2.9	11
13	A Selective Electrochemical Sensor for the Detection of Cd(II) Based on a Carbon Paste Electrode Impregnated with a Novel Ionâ€imprinted Hybrid Polymer. Electroanalysis, 2021, 33, 1557-1566.	2.9	3
14	Development of a New Electrochemical Sensor Based on Mag-MIP Selective Toward Amoxicillin in Different Samples. Frontiers in Chemistry, 2021, 9, 615602.	3.6	19
15	Process modeling toward higher degradation and minimum energy consumption of an electrochemical decontamination of food dye wastewater. Environmental Technology and Innovation, 2021, 22, 101509.	6.1	16
16	Surface molecularly imprinted core-shell nanoparticles and reflectance spectroscopy for direct determination of tartrazine in soft drinks. Analytica Chimica Acta, 2021, 1159, 338443.	5.4	16
17	Self-doping of Nb2O5NC by cathodic polarization for enhanced conductivity properties and photoelectrocatalytic performance. Chemosphere, 2021, 272, 129880.	8.2	2
18	Preparation of a magnetic molecularly imprinted polymer for non-invasive determination of cortisol. Journal of Polymer Research, 2021, 28, 1.	2.4	9

SABIR KHAN

#	Article	IF	CITATIONS
19	A simple, sensitive and efficient electrochemical platform based on carbon paste electrode modified with Fe3O4@MIP and graphene oxide for folic acid determination in different matrices. Talanta, 2021, 229, 122258.	5.5	34
20	Development of magnetic nanoparticles modified with new molecularly imprinted polymer (MIPs) for selective analysis of glutathione. Sensors and Actuators B: Chemical, 2021, 344, 130171.	7.8	16
21	Using magnetic nanoparticles/MIP-based electrochemical sensor for quantification of tetracycline in milk samples. Journal of Electroanalytical Chemistry, 2021, 900, 115713.	3.8	28
22	A novel highly sensitive imprinted polymer-based optical sensor for the detection of Pb(II) in water samples. Environmental Nanotechnology, Monitoring and Management, 2021, 16, 100497.	2.9	6
23	Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water samples. Journal of Hazardous Materials, 2020, 384, 121374.	12.4	36
24	Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sensors and Actuators B: Chemical, 2020, 305, 127553.	7.8	14
25	Silica-based nanomaterials as designer adsorbents to mitigate emerging organic contaminants from water matrices. Journal of Water Process Engineering, 2020, 38, 101675.	5.6	33
26	Rational Design of an Ion-Imprinted Polymer for Aqueous Methylmercury Sorption. Nanomaterials, 2020, 10, 2541.	4.1	18
27	Desulfurization of Model Oil through Adsorption over Activated Charcoal and Bentonite Clay Composites. Chemical Engineering and Technology, 2020, 43, 564-573.	1.5	23
28	Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Materials Chemistry and Physics, 2020, 245, 122777.	4.0	35
29	Computational and statistical modeling for parameters optimization of electrochemical decontamination of synozol red dye wastewater. Chemosphere, 2020, 253, 126673.	8.2	36
30	Performance evaluation of photolytic and electrochemical oxidation processes for enhanced degradation of food dyes laden wastewater. Water Science and Technology, 2020, 81, 971-984.	2.5	53
31	Electrochemical preparation of Nb2O5 nanochannel photoelectrodes for enhanced photoelectrocatalytic performance in removal of RR120 dye. Chemosphere, 2020, 257, 127164.	8.2	10
32	Synthesis, characterization and application of a novel ion hybrid imprinted polymer to adsorb Cd(II) in different samples. Environmental Research, 2020, 187, 109669.	7.5	25
33	Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Materials Science and Engineering C, 2019, 103, 109825.	7.3	62
34	First Time Determination of Important Catalyst Sodium Methoxide Used in Biodiesel by Colorimetric Method. Analytical Chemistry, 2018, 90, 3550-3555.	6.5	2
35	Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor. Talanta, 2018, 181, 19-23.	5.5	32
36	Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. Reactive and Functional Polymers, 2018, 122, 175-182.	4.1	66

SABIR KHAN

#	Article	IF	CITATIONS
37	Electrochemical Oxidation of Acid Brown 98 using Ti/Ru0.3Ti0.7O2 Composite Anode. International Journal of Electrochemical Science, 2018, 13, 9428-9440.	1.3	8
38	The Druggable Pocketome of Corynebacterium diphtheriae: A New Approach for in silico Putative Druggable Targets. Frontiers in Genetics, 2018, 9, 44.	2.3	8
39	Preparation of crosslinked chitosan magnetic membrane for cations sorption from aqueous solution. Water Science and Technology, 2017, 75, 2034-2046.	2.5	38
40	Application of ultrasonically modified cloud point extraction method for simultaneous enrichment of cadmium and lead in sera of different types of gallstone patients. Ultrasonics Sonochemistry, 2017, 39, 313-320.	8.2	50
41	Variation of calcium, copper and iron levels in serum, bile and stone samples of patients having different types of gallstone: A comparative study. Clinica Chimica Acta, 2017, 471, 254-262.	1.1	13
42	Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water samples. Talanta, 2017, 170, 244-251.	5.5	56
43	Quantitation and Adsorption of Glyphosate Using Various Treated Clay. Zeitschrift Fur Physikalische Chemie, 2017, 231, 1815-1829.	2.8	6
44	Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound. Materials Science and Engineering C, 2017, 74, 365-373.	7.3	16
45	NEW SPECTROPHOTOMETRY METHOD FOR THE DETERMINATION OF MIRTAZAPINE IN PHARMACEUTICAL FORMULATIONS. Journal of the Chilean Chemical Society, 2016, 61, 2913-2915.	1.2	4
46	A novel core@shell magnetic molecular imprinted nanoparticles for selective determination of folic acid in different food samples. Reactive and Functional Polymers, 2016, 106, 51-56.	4.1	34
47	Use of HCl-modified bentonite clay for the adsorption of Acid Blue 129 from aqueous solutions. Desalination and Water Treatment, 2016, 57, 8894-8903.	1.0	13
48	Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chemistry, 2016, 190, 460-467.	8.2	76
49	Adsorption Characteristics of Magnesium-Modified Bentonite Clay with Respect to Acid Blue 129 in Aqueous Media. Polish Journal of Environmental Studies, 2016, 25, 1947-1953.	1.2	22
50	Flow Injection Analysis System for Screening Organophosphorus Pesticides by their Inhibitory Effect on the Enzyme Acethylcholinesterase. Journal of the Brazilian Chemical Society, 2015, , .	0.6	1
51	DEVELOPMENT OF AN ELECTROCHEMICAL SENSOR MODIFIED WITH MWCNT-COOH AND MIP FOR DETECTION OF DIURON. Electrochimica Acta, 2015, 182, 122-130.	5.2	85
52	Removal of Cr(VI) from aqueous solution using brick kiln chimney waste as adsorbent. Desalination and Water Treatment, 2015, 53, 373-381.	1.0	16
53	Brick kiln exhaust as a source of polycyclic aromatic hydrocarbons (PAHs) in the surrounding soil and plants: a case study from the city of Peshawar, Pakistan. Arabian Journal of Geosciences, 2014, 7, 13-19.	1.3	21
54	Retention studies of chromium (VI) from aqueous solution on the surface of a novel carbonaceous material. Arabian Journal of Geosciences, 2013, 6, 4547-4556.	1.3	17

SABIR KHAN

#	Article	IF	CITATIONS
55	Evaluation of coal as adsorbent for phosphate removal. Arabian Journal of Geosciences, 2013, 6, 1113-1117.	1.3	20
56	Thermometric Quantitative Selective Analysis of Sodium Methoxide in Methanol Industrial Solutions. Journal of the Brazilian Chemical Society, 2013, , .	0.6	2
57	Rapid determination of nitrites in food using a diffuse UV-visible reflectance method. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1256-1262.	2.3	7
58	Contamination of Water Resources by Food Dyes and Its Removal Technologies. , 0, , .		23