
Filippo Sarvia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9362880/publications.pdf Version: 2024-02-01

FILIDDO SADVIA

#	Article	IF	CITATIONS
1	Multitemporal dual-pol Sentinel-1 data to support monitoring of forest post-fire dynamics. Geocarto International, 2024, 37, 15463-15484.	3.5	1
2	Mapping Ecological Focus Areas within the EU CAP Controls Framework by Copernicus Sentinel-2 Data. Agronomy, 2022, 12, 406.	3.0	11
3	Uncertainties and Perspectives on Forest Height Estimates by Sentinel-1 Interferometry. Earth, 2022, 3, 479-492.	2.2	1
4	A simplified method for water depth mapping over crops during flood based on Copernicus and DTM open data. Agricultural Water Management, 2022, 269, 107642.	5.6	3
5	The Importance of Agronomic Knowledge for Crop Detection by Sentinel-2 in the CAP Controls Framework: A Possible Rule-Based Classification Approach. Agronomy, 2022, 12, 1228.	3.0	5
6	About Tree Height Measurement: Theoretical and Practical Issues for Uncertainty Quantification and Mapping. Forests, 2022, 13, 969.	2.1	2
7	A New Index for Assessing Tree Vigour Decline Based on Sentinel-2 Multitemporal Data. Application to Tree Failure Risk Management. Remote Sensing Letters, 2021, 12, 58-67.	1.4	6
8	MAIA S2 Versus Sentinel 2: Spectral Issues and Their Effects in the Precision Farming Context. Lecture Notes in Computer Science, 2021, , 63-77.	1.3	6
9	Sentinel-1 Polarimetry to Map Apple Orchard Damage after a Storm. Remote Sensing, 2021, 13, 1030.	4.0	13
10	Exploring Climate Change Effects on Vegetation Phenology by MOD13Q1 Data: The Piemonte Region Case Study in the Period 2001–2019. Agronomy, 2021, 11, 555.	3.0	27
11	Multi-temporal mapping of flood damage to crops using sentinel-1 imagery: a case study of the Sesia River (October 2020). Remote Sensing Letters, 2021, 12, 459-469.	1.4	15
12	Addressing management practices of private forests by remote sensing and open data: A tentative procedure. Remote Sensing Applications: Society and Environment, 2021, 23, 100563.	1.5	3
13	A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy, 2021, 11, 110.	3.0	30
14	Mapping SAR geometric distortions and their stability along time: a new tool in Google Earth Engine based on Sentinel-1 image time series. International Journal of Remote Sensing, 2021, 42, 9135-9154.	2.9	10
15	Supporting Pro-Poor Reforms of Agricultural Systems in Eastern DRC (Africa) with Remotely Sensed Data: A Possible Contribution of Spatial Entropy to Interpret Land Management Practices. Land, 2021, 10, 1368.	2.9	14
16	RPAS-based photogrammetry to support tree stability assessment: Longing for precision arboriculture. Urban Forestry and Urban Greening, 2020, 55, 126862.	5.3	11
17	Multi-scale remote sensing to support insurance policies in agriculture: from mid-term to instantaneous deductions. GlScience and Remote Sensing, 2020, 57, 770-784.	5.9	22
18	A Methodological Proposal to Support Estimation of Damages from Hailstorms Based on Copernicus Sentinel 2 Data Times Series. Lecture Notes in Computer Science, 2020, , 737-751.	1.3	11

FILIPPO SARVIA

#	Article	IF	CITATIONS
19	When a definition makes the difference: operative issues about tree height measures from RPAS-derived CHMs. IForest, 2020, 13, 404-408.	1.4	4
20	Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level. Lecture Notes in Computer Science, 2019, , 186-199.	1.3	12
21	Precision arboriculture: a new approach to tree risk management based on geomatics tools. , 2019, , .		8
22	Remotely sensed data to support insurance strategies in agriculture. , 2019, , .		6