Zsuzsanna Fabry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9362640/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Initiation of Immune Responses in Brain Is Promoted by Local Dendritic Cells. Journal of Immunology, 2004, 173, 2353-2361.	0.8	211
2	Neuroinflammation-induced lymphangiogenesis near the cribriform plate contributes to drainage of CNS-derived antigens and immune cells. Nature Communications, 2019, 10, 229.	12.8	123
3	Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures?. Immunology, 2018, 154, 363-376.	4.4	117
4	Dendritic Cell Transmigration through Brain Microvessel Endothelium Is Regulated by MIP-1α Chemokine and Matrix Metalloproteinases. Journal of Immunology, 2007, 178, 520-529.	0.8	112
5	T cell–derived interleukin (IL)-21 promotes brain injury following stroke in mice. Journal of Experimental Medicine, 2014, 211, 595-604.	8.5	85
6	Immune privilege of the CNS is not the consequence of limited antigen sampling. Scientific Reports, 2014, 4, 4422.	3.3	77
7	The role of dendritic cells in CNS autoimmunity. Journal of Molecular Medicine, 2010, 88, 535-544.	3.9	70
8	Intracerebral Dendritic Cells Critically Modulate Encephalitogenic versus Regulatory Immune Responses in the CNS. Journal of Neuroscience, 2009, 29, 140-152.	3.6	65
9	Intrauterine inflammation induces sex-specific effects on neuroinflammation, white matter, and behavior. Brain, Behavior, and Immunity, 2017, 66, 277-288.	4.1	56
10	CCR2-Dependent Dendritic Cell Accumulation in the Central Nervous System during Early Effector Experimental Autoimmune Encephalomyelitis Is Essential for Effector T Cell Restimulation In Situ and Disease Progression. Journal of Immunology, 2015, 194, 531-541.	0.8	53
11	<i>Mycobacterium bovis</i> Bacille Calmette-GueÌrin Infection in the CNS Suppresses Experimental Autoimmune Encephalomyelitis and Th17 Responses in an IFN-γ-Independent Manner. Journal of Immunology, 2008, 181, 6201-6212.	0.8	52
12	Safety and efficacy of helminth treatment in relapsing-remitting multiple sclerosis: Results of the HINT 2 clinical trial. Multiple Sclerosis Journal, 2019, 25, 81-91.	3.0	48
13	Dendritic Cells in Chronic Mycobacterial Granulomas Restrict Local Anti-Bacterial T Cell Response in a Murine Model. PLoS ONE, 2010, 5, e11453.	2.5	42
14	CCR7 deficient inflammatory Dendritic Cells are retained in the Central Nervous System. Scientific Reports, 2017, 7, 42856.	3.3	39
15	VEGF-A from Granuloma Macrophages Regulates Granulomatous Inflammation by a Non-angiogenic Pathway during Mycobacterial Infection. Cell Reports, 2019, 27, 2119-2131.e6.	6.4	37
16	Deletion of Mitochondrial Anchoring Protects Dysmyelinating Shiverer: Implications for Progressive MS. Journal of Neuroscience, 2015, 35, 5293-5306.	3.6	33
17	Lymphangiogenesis Is Induced by Mycobacterial Granulomas via Vascular Endothelial Growth Factor Receptor-3 and Supports Systemic T-Cell Responses against Mycobacterial Antigen. American Journal of Pathology, 2015, 185, 432-445.	3.8	32
18	Mycobacterium-Infected Dendritic Cells Disseminate Granulomatous Inflammation. Scientific Reports, 2015, 5, 15248.	3.3	29

ZSUZSANNA FABRY

#	Article	IF	CITATIONS
19	Sensing the microenvironment of the central nervous system: immune cells in the central nervous system and their pharmacological manipulation. Current Opinion in Pharmacology, 2008, 8, 496-507.	3.5	27
20	Innate-Adaptive Crosstalk: How Dendritic Cells Shape Immune Responses in the CNS. Advances in Experimental Medicine and Biology, 2012, 946, 309-333.	1.6	27
21	Mapping the accumulation of co-infiltrating CNS dendritic cells and encephalitogenic T cells during EAE. Journal of Neuroimmunology, 2014, 277, 39-49.	2.3	26
22	Molecular Mechanisms of Neuroimmune Crosstalk in the Pathogenesis of Stroke. International Journal of Molecular Sciences, 2021, 22, 9486.	4.1	25
23	Contrasting roles of immune cells in tissue injury and repair in stroke: The dark and bright side of immunity in the brain. Neurochemistry International, 2017, 107, 104-116.	3.8	24
24	Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nature Immunology, 2022, 23, 581-593.	14.5	23
25	CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. Journal of Neuroinflammation, 2022, 19, .	7.2	16
26	Experimental Autoimmune Encephalomyelitis in the Mouse. Current Protocols, 2021, 1, e300.	2.9	11
27	Regional Distribution of CNS Antigens Differentially Determines T-Cell Mediated Neuroinflammation in a CX3CR1-Dependent Manner. Journal of Neuroscience, 2018, 38, 7058-7071.	3.6	10
28	Mycobacteria-Induced Suppression of Autoimmunity in the Central Nervous System. Journal of NeuroImmune Pharmacology, 2010, 5, 210-219.	4.1	9
29	Current concepts on communication between the central nervous system and peripheral immunity via lymphatics: what roles do lymphatics play in brain and spinal cord disease pathogenesis?. Biologia Futura, 2021, 72, 45-60.	1.4	9
30	Neuroinflammation-Driven Lymphangiogenesis in CNS Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 683676.	3.7	9
31	A Novel In Vitro Mouse Model to Study Mycobacterium tuberculosis Dissemination Across Brain Vessels: A Combination Granuloma and Bloodâ€Brain Barrier Mouse Model. Current Protocols in Immunology, 2020, 130, e101.	3.6	8
32	The meningeal lymphatics: regulators of $A\hat{I}^2$ immunotherapy?. Trends in Immunology, 2021, 42, 940-942.	6.8	5
33	Current concepts in granulomatous immune responses. Biologia Futura, 2021, 72, 61-68.	1.4	3
34	Mycobacterium bovis Bacillus Calmette–Guérin–Infected Dendritic Cells Induce TNF-α–Dependent Cell Cluster Formation That Promotes Bacterial Dissemination through an In Vitro Model of the Blood–Brain Barrier. Journal of Immunology, 2021, 207, 1065-1077.	0.8	3
35	Murine Endothelia Do not Express MHC Class II I-Eα Subunit and Differentially Regulate I-Aα Expression along the Vascular Tree. Endothelium: Journal of Endothelial Cell Research, 1998, 6, 83-93.	1.7	2
36	T Cell Interactions in Mycobacterial Granulomas: Non-Specific T Cells Regulate Mycobacteria-Specific T Cells in Granulomatous Lesions. Cells, 2021, 10, 3285.	4.1	2