
Simon E Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9362417/publications.pdf Version: 2024-02-01

SIMON FLEWIS

#	Article	IF	CITATIONS
1	Cycloparaphenylenes and related nanohoops. Chemical Society Reviews, 2015, 44, 2221-2304.	38.1	397
2	Fluorescent small organic probes for biosensing. Chemical Science, 2021, 12, 3406-3426.	7.4	249
3	TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ9-tetrahydrocannabiorcol. Nature Communications, 2011, 2, 551.	12.8	236
4	Partial cation substitution reduces iodide ion transport in lead iodide perovskite solar cells. Energy and Environmental Science, 2019, 12, 2264-2272.	30.8	168
5	Azulene-Derived Fluorescent Probe for Bioimaging: Detection of Reactive Oxygen and Nitrogen Species by Two-Photon Microscopy. Journal of the American Chemical Society, 2019, 141, 19389-19396.	13.7	125
6	Azulenesulfonium Salts: Accessible, Stable, and Versatile Reagents for Crossâ€Coupling. Angewandte Chemie - International Edition, 2016, 55, 2564-2568.	13.8	105
7	Recent advances in the chemistry of macroline, sarpagine and ajmaline-related indole alkaloids. Tetrahedron, 2006, 62, 8655-8681.	1.9	88
8	Applications of biocatalytic arene ipso,ortho cis-dihydroxylation in synthesis. Chemical Communications, 2014, 50, 2821-2830.	4.1	72
9	Azulene–boronate esters: colorimetric indicators for fluoride in drinking water. Chemical Communications, 2017, 53, 12580-12583.	4.1	65
10	Photooxygenation of a Microbial Arene Oxidation Product and Regioselective Kornblum–DeLaMare Rearrangement: Total Synthesis of Zeylenols and Zeylenones. Chemistry - A European Journal, 2012, 18, 4766-4774.	3.3	61
11	Total Synthesis of (+)-Grandifloracin by Iron Complexation of a Microbial Arene Oxidation Product. Organic Letters, 2011, 13, 3150-3153.	4.6	56
12	Azetidinium lead iodide for perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 20658-20665.	10.3	53
13	Enantioselective transformation of fluoxetine in water and its ecotoxicological relevance. Scientific Reports, 2017, 7, 15777.	3.3	52
14	A new assay for rhamnolipid detection—important virulence factors of Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2014, 98, 7199-7209.	3.6	48
15	(Fluoro)quinolones and quinolone resistance genes in the aquatic environment: A river catchment perspective. Water Research, 2020, 182, 116015.	11.3	48
16	"Inosaminoacidsâ€: novel inositol–amino acid hybrid structures accessed by microbial arene oxidation. Chemical Communications, 2011, 47, 4799.	4.1	47
17	Investigation of a copper(i) biquinoline complex for application in dye-sensitized solar cells. RSC Advances, 2013, 3, 23361.	3.6	41
18	Azulene – Thiophene – Cyanoacrylic acid dyes with donor-π-acceptor structures. Synthesis, characterisation and evaluation in dye-sensitized solar cells. Tetrahedron, 2018, 74, 2775-2786.	1.9	41

SIMON E LEWIS

#	Article	IF	CITATIONS
19	New aminocyclitols with quaternary stereocentres via acylnitroso cycloaddition with an ipso,ortho arene dihydrodiol. Tetrahedron, 2013, 69, 5989-5997.	1.9	38
20	Azulene—A Bright Core for Sensing and Imaging. Molecules, 2021, 26, 353.	3.8	33
21	Self-assembly and surface behaviour of pure and mixed zwitterionic amphiphiles in a deep eutectic solvent. Soft Matter, 2018, 14, 5525-5536.	2.7	30
22	Accessing the antipodal series in microbial arene oxidation: a novel diene rearrangement induced by tricarbonyliron(0) complexation. Chemical Communications, 2011, 47, 215-217.	4.1	29
23	Azulenesulfonium Salts: Accessible, Stable, and Versatile Reagents for Crossâ€Coupling. Angewandte Chemie, 2016, 128, 2610-2614.	2.0	29
24	A Colorimetric Chemosensor Based on a Nozoe Azulene That Detects Fluoride in Aqueous/Alcoholic Media. Frontiers in Chemistry, 2020, 8, 10.	3.6	28
25	Iron(0) Tricarbonyl Complexes of Microbially Derived Cyclohexadiene Ligands Containing Quaternary Stereocenters. Organometallics, 2010, 29, 199-204.	2.3	22
26	What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell. Dyes and Pigments, 2016, 134, 419-426.	3.7	22
27	Expanding the chiral pool: oxidation of meta-bromobenzoic acid by R. eutrophus B9 allows access to new reaction manifolds. Organic and Biomolecular Chemistry, 2011, 9, 3920.	2.8	21
28	A simple, azulene-based colorimetric probe for the detection of nitrite in water. Frontiers of Chemical Science and Engineering, 2020, 14, 90-96.	4.4	21
29	Colorimetric detection of Hg ²⁺ with an azulene-containing chemodosimeter <i>via</i> dithioacetal hydrolysis. Analyst, The, 2020, 145, 6262-6269.	3.5	21
30	Transannular, decarboxylative Claisen rearrangement reactions for the synthesis of sulfur-substituted vinylcyclopropanes. Chemical Communications, 2010, 46, 4991.	4.1	20
31	Valuable New Cyclohexadiene Building Blocks from Cationic η ⁵ â€ŀron–Carbonyl Complexes Derived from a Microbial Arene Oxidation Product. Chemistry - A European Journal, 2012, 18, 13480-13493.	3.3	20
32	Benzoate dioxygenase fromRalstonia eutrophaB9 – unusual regiochemistry of dihydroxylation permits rapid access to novel chirons. Organic Chemistry Frontiers, 2014, 1, 79-90.	4.5	17
33	Langmuir monolayers composed of single and double tail sulfobetaine lipids. Journal of Colloid and Interface Science, 2016, 474, 190-198.	9.4	15
34	Azulenes with aryl substituents bearing pentafluorosulfanyl groups: synthesis, spectroscopic and halochromic properties. New Journal of Chemistry, 2019, 43, 992-1000.	2.8	15
35	Highly regioselective decarboxylative Claisen rearrangement reactions of diallyl 2-sulfonylmalonates. Tetrahedron Letters, 2007, 48, 7861-7864.	1.4	13
36	Direct core functionalisation of naphthalenediimides by iridium catalysed C–H borylation. Chemical Communications, 2014, 50, 13837-13840.	4.1	13

SIMON E LEWIS

#	Article	IF	CITATIONS
37	The enone motif of (+)-grandifloracin is not essential for â€~anti-austerity' antiproliferative activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 2815-2819.	2.2	13
38	Sidechain Diversification of Grandifloracin Allows Identification of Analogues with Enhanced Antiâ€Austerity Activity against Human PANCâ€1 Pancreatic Cancer Cells. ChemMedChem, 2020, 15, 125-135.	3.2	12
39	A cobalt complex of a microbial arene oxidation product. Chemistry Central Journal, 2011, 5, 80.	2.6	10
40	A Model System for the Synthesis of Complanadine Alkaloids by "Diverted Kondrat'eva― Oxazole–Olefin Cycloaddition. Journal of Organic Chemistry, 2013, 78, 6253-6263.	3.2	10
41	Azulene-based fluorescent chemosensor for adenosine diphosphate. Chemical Communications, 2021, 57, 10608-10611.	4.1	10
42	Concise Synthesis of 1,4a-Bifunctionalised Decalin Building Blocks by C-H Activation of Decalin. Synlett, 2011, 2011, 2211-2213.	1.8	9
43	Aliphatic C–H activation with aluminium trichloride–acetyl chloride: expanding the scope of the Baddeley reaction for the functionalisation of saturated hydrocarbons. Organic and Biomolecular Chemistry, 2013, 11, 1468-1475.	2.8	8
44	Azulene Functionalization by Iron-Mediated Addition to a Cyclohexadiene Scaffold. Journal of Organic Chemistry, 2020, 85, 13453-13465.	3.2	8
45	Synthetic methods Part (II): oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2011, 107, 34.	0.9	7
46	C4-aldehyde of guaiazulene: synthesis and derivatisation. Organic and Biomolecular Chemistry, 2021, 19, 2502-2511.	2.8	6
47	Synthetic methods : Part (ii) Oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2010, 106, 34.	0.9	5
48	C–H Functionalization of sp ³ Centers with Aluminum: A Computational and Mechanistic Study of the Baddeley Reaction of Decalin. Journal of the American Chemical Society, 2014, 136, 13745-13753.	13.7	5
49	Azulenesulfonium and azulenebis(sulfonium) salts: Formation by interrupted Pummerer reaction and subsequent derivatisation by nucleophiles. Tetrahedron, 2020, 76, 131700.	1.9	5
50	Synthetic methods : Part (ii) Oxidation and reduction methods. Annual Reports on the Progress of Chemistry Section B, 2009, 105, 35.	0.9	4
51	Selective Iron-Mediated <i>C</i> - and <i>O</i> -Addition of Phenolic Nucleophiles to a Cyclohexadiene Scaffold Using Renewable Precursors. ACS Sustainable Chemistry and Engineering, 2019, 7, 7155-7162.	6.7	4
52	Palladium Catalyzed Stereoselective Arylation of Biocatalytically Derived Cyclic 1,3-Dienes: Chirality Transfer via a Heck-Type Mechanism. Organic Letters, 2020, 22, 2464-2469.	4.6	4
53	Tricarbonyliron(0) complexes of bio-derived î·4 cyclohexadiene ligands: An approach to analogues of oseltamivir. Journal of Organometallic Chemistry, 2015, 799-800, 19-29.	1.8	3
54	Phosphorus-Substituted Azulenes Accessed via Direct Hafner Reaction of a Phosphino Cyclopentadienide. Synlett, 2017, 28, 973-975.	1.8	3

#	Article	IF	CITATIONS
55	Bifunctional Silyl Triflates in Synthesis, Part 1: Synthesis and Characterization of Novel Alkane-α,ï‰-diyl-bis(silyl triflates). Synthetic Communications, 2010, 40, 2747-2752.	2.1	2
56	Palladium-catalyzed stereoselective domino arylation–acylation: an entry to chiral tetrahydrofluorenone scaffolds. Chemical Communications, 2021, 57, 6518-6521.	4.1	2
57	Crystallographic rationalization of the reactivity and spectroscopic properties of (2R)-S-(2,5-dihydroxyphenyl)cysteine. Acta Crystallographica Section C: Crystal Structure Communications, 2010, 66, o187-o189.	0.4	0