Maria Elena Perez Mayoral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9361796/publications.pdf

Version: 2024-02-01

61 papers 2,009 citations

23 h-index 286692 43 g-index

63 all docs 63
docs citations

63 times ranked

2853 citing authors

#	Article	IF	Citations
1	Enhanced catalytic performance of ZnO/carbon materials in the green synthesis of poly-substituted quinolines. Journal of Environmental Chemical Engineering, 2022, 10, 106879.	3.3	11
2	Porous catalytic systems in the synthesis of bioactive heterocycles and related compounds., 2021, , 97-164.		3
3	Amino-grafted Cu and Sc Metal-Organic Frameworks involved in the green synthesis of 2-amino-4H-chromenes. Mechanistic understanding. Microporous and Mesoporous Materials, 2021, 323, 111232.	2.2	6
4	Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catalysis Today, 2020, 354, 90-99.	2.2	13
5	Basic-carbon nanocatalysts in the efficient synthesis of chromene derivatives. Valorization of both PET residues and mineral sources. Chemical Engineering Journal, 2020, 382, 122795.	6.6	10
6	Basolites: A type of Metal Organic Frameworks highly efficient in the one-pot synthesis of quinoxalines from α-hydroxy ketones under aerobic conditions. Catalysis Today, 2020, 345, 258-266.	2.2	11
7	Acidic porous carbons involved in the green and selective synthesis of benzodiazepines. Catalysis Today, 2020, 357, 64-73.	2.2	13
8	Towards highly efficient hydrotalcite/hydroxyapatite composites as novel catalysts involved in eco-synthesis of chromene derivatives. Applied Clay Science, 2020, 198, 105833.	2.6	11
9	Carbon-Based Materials for the Development of Highly Dispersed Metal Catalysts: Towards Highly Performant Catalysts for Fine Chemical Synthesis. Catalysts, 2020, 10, 1407.	1.6	24
10	Enhanced catalytic performance of highly mesoporous hydrotalcite/SBA-15 composites involved in chromene multicomponent synthesis. Microporous and Mesoporous Materials, 2020, 309, 110569.	2.2	14
11	Tantalum vs Niobium MCF nanocatalysts in the green synthesis of chromene derivatives. Catalysis Today, 2019, 325, 47-52.	2.2	11
12	New and Advanced Porous Carbon Materials in Fine Chemical Synthesis. Emerging Precursors of Porous Carbons. Catalysts, 2019, 9, 133.	1.6	56
13	Cobalt oxide–carbon nanocatalysts with highly enhanced catalytic performance for the green synthesis of nitrogen heterocycles through the FriedlÃnder condensation. Dalton Transactions, 2019, 48, 5637-5648.	1.6	11
14	Bifunctional Porous Catalysts in the Synthesis of Valuable Products., 2019,, 25-61.		1
15	Developing strategies for the preparation of Co-carbon catalysts involved in the free solvent selective synthesis of aza-heterocycles. Molecular Catalysis, 2018, 445, 223-231.	1.0	10
16	Enhanced Catalytic Properties of Carbon supported Zirconia and Sulfated Zirconia for the Green Synthesis of Benzodiazepines. ChemCatChem, 2018, 10, 5215-5223.	1.8	15
17	Highly Efficient and Selective Catalytic Synthesis of Quinolines Involving Transitionâ€Metalâ€Doped Carbon Aerogels. ChemCatChem, 2017, 9, 1422-1428.	1.8	23
18	Silica-based nanocatalysts in the C C and C-heteroatom bond forming cascade reactions for the synthesis of biologically active heterocyclic scaffolds. Catalysis Today, 2017, 285, 65-88.	2.2	17

#	Article	IF	CITATIONS
19	Acid clay minerals as eco-friendly and cheap catalysts for the synthesis of \hat{l}^2 -amino ketones by Mannich reaction. Applied Clay Science, 2017, 143, 250-257.	2.6	14
20	Metal-free synthesis of quinolines catalyzed by carbon aerogels: Influence of the porous texture and surface chemistry. Chemical Engineering Journal, 2017, 314, 488-497.	6.6	25
21	Mesoporous niobiosilicate NbMCF modified with alkali metals in the synthesis of chromene derivatives. Catalysis Today, 2016, 277, 133-142.	2.2	17
22	Metal-supported carbon-based materials: opportunities and challenges in the synthesis of valuable products. Catalysis Science and Technology, 2016, 6, 1265-1291.	2.1	135
23	Porous Catalytic Systems in the Synthesis of Bioactive Heterocycles and Related Compounds. , 2015, , 377-408.		4
24	A step forward to the dehydrogenation reversibility of amine-borane adducts by coupling sodium and hydrocarbon groups. International Journal of Hydrogen Energy, 2015, 40, 2763-2767.	3.8	9
25	Imidazolium Sulfonates as Environmental-Friendly Catalytic Systems for the Synthesis of Biologically Active 2-Amino-4 <i>H</i> -chromenes: Mechanistic Insights. Journal of Physical Chemistry B, 2015, 119, 12042-12049.	1.2	17
26	Amino-grafted SBA-15 material as dual acid–base catalyst for the synthesis of coumarin derivatives. Catalysis Today, 2014, 227, 215-222.	2.2	29
27	Ecoâ€Friendly Catalytic Systems Based on Carbonâ€Supported Magnesium Oxide Materials for the FriedlÄnder Condensation. ChemCatChem, 2014, 6, 3440-3447.	1.8	16
28	Thermolytic Decomposition of Ethane 1,2-Diamineborane Investigated by Thermoanalytical Methods and in Situ Vibrational Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 17221-17230.	1.5	43
29	Molecular sieves and catalysis. CIS-5 conference. Catalysis Today, 2014, 227, 1.	2.2	1
30	Amino-grafted mesoporous materials based on MCF structure involved in the quinoline synthesis. Mechanistic insights. Journal of Molecular Catalysis A, 2013, 378, 38-46.	4.8	31
31	Acidâ€Activated Carbon Materials: Cheaper Alternative Catalysts for the Synthesis of Substituted Quinolines. ChemCatChem, 2013, 5, 3736-3742.	1.8	24
32	Bifunctional mesoporous MCF materials as catalysts in the FriedlÃnder condensation. Catalysis Today, 2013, 218-219, 70-75.	2.2	23
33	Theoretical investigation of the FriedlÄnder reaction catalysed by CuBTC: Concerted effect of the adjacent Cu2+ sites. Catalysis Today, 2013, 204, 101-107.	2.2	33
34	Intramolecular Hydroalkoxylation of Nonâ€Activated CC Bonds Catalysed by Zeolites: An Experimental and Theoretical Study. ChemSusChem, 2013, 6, 1021-1030.	3.6	10
35	Synthesis of quinolines via FriedlÃnder reaction catalyzed by CuBTC metal–organic-framework. Dalton Transactions, 2012, 41, 4036.	1.6	118
36	Mesoporous carbon as an efficient catalyst for alcoholysis and aminolysis of epoxides. Applied Catalysis A: General, 2012, 439-440, 24-30.	2.2	28

#	Article	IF	Citations
37	Efficient isomerization of safrole by amino-grafted MCM-41 materials as basic catalysts. Catalysis Today, 2012, 179, 159-163.	2.2	13
38	New inorganic–organic hybrid materials based on SBA-15 molecular sieves involved in the quinolines synthesis. Catalysis Today, 2012, 187, 97-103.	2.2	26
39	Cesium-saponites as excellent environmental-friendly catalysts for the synthesis of N-alkyl pyrazoles. Applied Clay Science, 2011, 54, 125-131.	2.6	10
40	[Cu ₃ (BTC) ₂]: A Metal–Organic Framework Catalyst for the FriedlÃnder Reaction. ChemCatChem, 2011, 3, 157-159.	1.8	139
41	Isomerization of Eugenol Under Ultrasound Activation Catalyzed by Alkali Modified Mesoporous NbMCM-41. Topics in Catalysis, 2010, 53, 179-186.	1.3	15
42	Zeolites Promoting Quinoline Synthesis via FriedlÃnder Reaction. Topics in Catalysis, 2010, 53, 1430-1437.	1.3	26
43	Zeolites Efficiently Promote the Cyclization of Nonactivated Unsaturated Alcohols. Chemistry - A European Journal, 2010, 16, 12079-12082.	1.7	15
44	Experimental and theoretical study of pyrazole N-alkylation catalyzed by basic modified molecular sieves. Chemical Engineering Journal, 2010, 161, 377-383.	6.6	15
45	Real-time Raman monitoring of dry media heterogeneous alkylation of imidazole with acidic and basic catalysts. Chemical Engineering Journal, 2010, 161, 371-376.	6.6	34
46	Coumarins Preparation by Pechmann Reaction Under Ultrasound Irradiation. Synthesis of Hymecromone as Insecticide Intermediate. Catalysis Letters, 2009, 128, 318-322.	1.4	26
47	Green Synthesis of Acetals/Ketals: Efficient Solvent-Free Process for the Carbonyl/Hydroxyl Group Protection Catalyzed by SBA-15 Materials. Topics in Catalysis, 2009, 52, 148-152.	1.3	24
48	Recent Advances in the FriedlÃnder Reaction. Chemical Reviews, 2009, 109, 2652-2671.	23.0	572
49	Novel Basic Mesoporous Catalysts for the FriedlÃnder Reaction from 2â€Aminoaryl Ketones: Quinolinâ€2(1 <i>H</i>)â€ones versus Quinolines. ChemCatChem, 2009, 1, 241-243.	1.8	60
50	Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy. European Journal of Radiology, 2008, 67, 453-458.	1.2	42
51	Novel Generation of pH Indicators for Proton Magnetic Resonance Spectroscopic Imaging. Journal of Medicinal Chemistry, 2007, 50, 4539-4542.	2.9	10
52	Synthetic Approaches to Heterocyclic Ligands for Gd-Based MRI Contrast Agents. Molecules, 2007, 12, 1771-1795.	1.7	7
53	Dimethyl (2E)-2-(4-nitro-1H-imidazol-1-yl)but-2-enedioate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1790-o1791.	0.2	O
54	Experimental and Theoretical Study of Lanthanide Complexes Based on Linear and Macrocyclic Polyaminopolycarboxylic Acids Containing Pyrazolylethyl Arms. Molecules, 2006, 11, 345-356.	1.7	8

#	Article	IF	CITATIONS
55	A Convenient and Efficient Synthesis of the First (Nitroimidazolyl)succinic Esters and their Diacids. Synthesis, 2006, 2006, 3859-3864.	1.2	1
56	Pyrazolo[3,4-c]pyridazines as Novel and Selective Inhibitors of Cyclin-Dependent Kinases. Journal of Medicinal Chemistry, 2005, 48, 6843-6854.	2.9	63
57	A novel series of complexones with bis- or biazole structure as mixed ligands of paramagnetic contrast agents for MRI. Bioorganic and Medicinal Chemistry, 2003, 11, 5555-5567.	1.4	10
58	A Novel Photochemical Vinylcyclopropane Rearrangement Yielding 6,7-Dihydro-5H-benzocycloheptene Derivatives. Organic Letters, 2000, 2, 183-186.	2.4	18
59	The aza-di-π-methane rearrangement of β-γ-unsaturated oximes. Tetrahedron Letters, 1994, 35, 3785-3788.	0.7	15
60	A Study of the Competition between the Dipimethane and the Azadipimethane Processes in 2-Vinylbeta.,.gammaunsaturated Oxime Derivatives. The Novel Azadipimethane Reactivity of .beta.,.gammaUnsaturated Oximes. Journal of Organic Chemistry, 1994, 59, 8115-8124.	1.7	20
61	The subcellular metabolism of water and its implications for magnetic resonance image contrast. Special Publication - Royal Society of Chemistry, 0, , 121-135.	0.0	3