Qiang Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9361756/publications.pdf

Version: 2024-02-01

		933447	888059
19	328	10	17
papers	citations	h-index	g-index
19	19	19	538
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Supporting students' inquiry in accurate precipitation titration conditions with a virtual laboratory tool as learning scaffold. Education for Chemical Engineers, 2022, 38, 78-85.	4.8	10
2	Nickel sulfide-oxide heterostructured electrocatalysts: Bi-functionality for overall water splitting and in-situ reconstruction. Journal of Colloid and Interface Science, 2022, 622, 728-737.	9.4	21
3	Developing and Evaluating an Inquiry-Based Online Course with a Simulation Program of Complexometric Titration. Journal of Chemical Education, 2021, 98, 1636-1644.	2.3	8
4	Observing dynamic molecular changes at single-molecule level in a cucurbituril based plasmonic molecular junction. Nanoscale, 2020, 12, 17103-17112.	5.6	16
5	pH-Mediated Single Molecule Conductance of Cucurbit[7]uril. Frontiers in Chemistry, 2020, 8, 736.	3.6	6
6	Detection of Secretion of Exosomes from Individual Cell in Real-Time by Multifunctional Nanoelectrode-Nanopore Nanopipettes. Chinese Journal of Analytical Chemistry, 2020, 48, e20061-e20068.	1.7	3
7	Modulating Nanoparticle Translocation by Surface Chemistry of Gold Nanopores. Chinese Journal of Analytical Chemistry, 2019, 47, e19081-e19087.	1.7	1
8	Probing Dynamic Events of Dielectric Nanoparticles by a Nanoelectrodeâ€Nanopore Nanopipette. ChemElectroChem, 2018, 5, 3102-3112.	3 . 4	11
9	d(GC)10 sequence within promoter region enhances the promoter activity inSaccharomyces cerevisiae. Acta Biochimica Et Biophysica Sinica, 2018, 50, 1288-1290.	2.0	O
10	Long Lifetime of Hydrogen-Bonded DNA Basepairs by Force Spectroscopy. Biophysical Journal, 2012, 102, 2381-2390.	0.5	19
11	The Telomere Binding Protein TRF2 Induces Chromatin Compaction. PLoS ONE, 2011, 6, e19124.	2.5	24
12	Studies of inactivation of encephalomyocarditis virus, M13 bacteriophage, and Salmonella typhimurium by using a visible femtosecond laser: insight into the possible inactivation mechanisms. Journal of Biomedical Optics, 2011, 16, 078003.	2.6	30
13	The Myb/SANT domain of the telomere-binding protein TRF2 alters chromatin structure. Nucleic Acids Research, 2009, 37, 5019-5031.	14.5	22
14	Chromatin Stability at Low Concentration Depends on Histone Octamer Saturation Levels. Biophysical Journal, 2009, 96, 1944-1951.	0.5	9
15	Recognition Imaging of Acetylated Chromatin Using a DNA Aptamer. Biophysical Journal, 2009, 97, 1804-1807.	0.5	14
16	Transverse Tunneling through DNA Hydrogen Bonded to an Electrode. Nano Letters, 2008, 8, 2530-2534.	9.1	18
17	Electrochemical Origin of Voltage-Controlled Molecular Conductance Switching. Journal of the American Chemical Society, 2006, 128, 14828-14835.	13.7	105
18	A non-noble amorphous Co–Fe–B catalyst highly selective in liquid phase hydrogenation of crotonaldehyde to crotyl alcohol. New Journal of Chemistry, 2005, 29, 992.	2.8	11

#	Article	IF	CITATIONS
19	Using an Infrared Camera to Visualize a Simple Demonstration of Changing the Internal Energy of a System. Journal of Chemical Education, 0, , .	2.3	O