Tomotake Morita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936161/publications.pdf

Version: 2024-02-01

142 papers 4,619 citations

40 h-index 60 g-index

145 all docs 145 docs citations

145 times ranked

2854 citing authors

#	Article	IF	CITATIONS
1	Selfâ€Assembling Properties and Recovery Effects on Damaged Skin Cells of Chemically Synthesized Mannosylerythritol Lipids. ChemBioChem, 2022, 23, .	1.3	9
2	Metabolomic Evaluation of the Central Metabolic Pathways of Mannosylerythritol Lipid Biosynthesis in <i>Moesziomyces antarcticus</i> T-34. Journal of Oleo Science, 2022, 71, 119-125.	0.6	5
3	Surface-assisted Laser Desorption/ionization Mass Spectrometry Analysis of the Glycolipid Biosurfactants, Mannosylerythritol Lipids, Using an Ionization-assisting Substrate. Journal of Oleo Science, 2021, 70, 1175-1179.	0.6	0
4	Disruption of protease A and B orthologous genes in the basidiomycetous yeast Pseudozyma antarctica GB-4(0) yields a stable extracellular biodegradable plastic-degrading enzyme. PLoS ONE, 2021, 16, e0247462.	1.1	1
5	Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks. Polymer Journal, 2021, 53, 1037-1045.	1.3	4
6	Evaluating haloarchaeal culture media for ultrahigh-molecular-weight polyhydroxyalkanoate biosynthesis by Haloferax mediterranei. Applied Microbiology and Biotechnology, 2021, 105, 6679-6689.	1.7	4
7	Draft Genome Sequence of a Basidiomycetous Yeast, Ustilago shanxiensis CBS 10075, Which Produces Mannosylerythritol Lipids. Microbiology Resource Announcements, 2021, 10, e0070621.	0.3	2
8	Glycolipid Biosurfactants, Mannosylerythritol Lipids: Distinctive Interfacial Properties and Applications in Cosmetic and Personal Care Products. Journal of Oleo Science, 2021, 71, 1-13.	0.6	7
9	Targeted transcriptomic study of the implication of central metabolic pathways in mannosylerythritol lipids biosynthesis in Pseudozyma antarctica T-34. PLoS ONE, 2020, 15, e0227295.	1.1	8
10	Screening and isolation of the liamocin-producing yeast Aureobasidium melanogenum using xylose as the sole carbon source. Journal of Bioscience and Bioengineering, 2020, 129, 428-434.	1.1	18
11	Characterization of an NAD(P)+-dependent meso-diaminopimelate dehydrogenase from Thermosyntropha lipolytica. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140476.	1.1	3
12	Identification and functional characterization of NAD(P) + â€dependent meso â€diaminopimelate dehydrogenase from Numidum massiliense. MicrobiologyOpen, 2020, 9, e1059.	1.2	5
13	Application of a Pyruvate-Producing Escherichia coli Strain LAFCPCPt-accBC-aceE: A Case Study for d-Lactate Production. Fermentation, 2020, 6, 70.	1.4	3
14	Bio-Based, Flexible, and Tough Material Derived from $\hat{l}\mu$ -Poly- <scp>I</scp> -lysine and Fructose via the Maillard Reaction. ACS Omega, 2020, 5, 22793-22799.	1.6	6
15	A putative transporter gene PtMMF1-deleted strain produces mono-acylated mannosylerythritol lipids in Pseudozyma tsukubaensis. Applied Microbiology and Biotechnology, 2020, 104, 10105-10117.	1.7	15
16	Mechanical properties of cold-drawn films of ultrahigh-molecular-weight poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Polymer Journal, 2020, 52, 1299-1306.	1.3	12
17	A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes. Journal of Wood Chemistry and Technology, 2020, 40, 172-177.	0.9	9
18	Title is missing!. , 2020, 15, e0227295.		0

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0227295.		0
20	Title is missing!. , 2020, 15, e0227295.		0
21	Title is missing!. , 2020, 15, e0227295.		0
22	Title is missing!. , 2020, 15, e0227295.		0
23	Title is missing!. , 2020, 15, e0227295.		0
24	Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, Pseudozyma antarctica defective in mannosylerythritol lipid biosynthesis. AMB Express, 2019, 9, 100.	1.4	6
25	Moldable Material from Îμ-Poly-l-lysine and Lignosulfonate: Mechanical and Self-Healing Properties of a Bio-Based Polyelectrolyte Complex. ACS Omega, 2019, 4, 9756-9762.	1.6	10
26	Construction of a <i>Pseudozyma antarctica</i> strain without foreign DNA sequences (self-cloning) Tj ETQq0 0 Biotechnology and Biochemistry, 2019, 83, 1547-1556.	0 rgBT /O 0.6	verlock 10 Tf 7
27	A New Screening Approach for Glycolipid-type Biosurfactant Producers Using MALDI-TOF/MS. Journal of Oleo Science, 2019, 68, 1287-1294.	0.6	11
28	Biosynthesis of mono-acylated mannosylerythritol lipid in an acyltransferase gene-disrupted mutant of Pseudozyma tsukubaensis. Applied Microbiology and Biotechnology, 2018, 102, 1759-1767.	1.7	19
29	Application of Glycolipid Biosurfactants as Surface Modifiers in Bioplastics. Journal of Oleo Science, 2018, 67, 1609-1616.	0.6	13
30	Moldable and Humidity-Responsive Self-Healable Complex from Lignosulfonate and Cationic Polyelectrolyte. ACS Sustainable Chemistry and Engineering, 2018, 6, 14831-14837.	3.2	16
31	Tailor-made mannosylerythritol lipids: current state and perspectives. Applied Microbiology and Biotechnology, 2018, 102, 6877-6884.	1.7	43
32	Efficient Production of Acid-Form Sophorolipids from Waste Glycerol and Fatty Acid Methyl Esters by & lt;i>Candida floricola. Journal of Oleo Science, 2018, 67, 489-496.	0.6	42
33	Identification of the gene PtMAT1 encoding acetyltransferase from the diastereomer type of mannosylerythritol lipid-B producer Pseudozyma tsukubaensis. Journal of Bioscience and Bioengineering, 2018, 126, 676-681.	1.1	5
34	Degradation profiles of biodegradable plastic films by biodegradable plastic-degrading enzymes from the yeast Pseudozyma antarctica and the fungus Paraphoma sp. B47-9. Polymer Degradation and Stability, 2017, 141, 26-32.	2.7	33
35	Enhanced production of a diastereomer type of mannosylerythritol lipid-B by the basidiomycetous yeast Pseudozyma tsukubaensis expressing lipase genes from Pseudozyma antarctica. Applied Microbiology and Biotechnology, 2017, 101, 8345-8352.	1.7	18
36	Targeted gene replacement at the <i>URA3</i> locus of the basidiomycetous yeast <i>Pseudozyma antarctica</i> and its transformation using lithium acetate treatment. Yeast, 2017, 34, 483-494.	0.8	10

#	Article	IF	CITATIONS
37	Draft Genome Sequence of Geobacter pelophilus Strain Dfr2, a Ferric Iron–Reducing Bacterium. Genome Announcements, 2017, 5, .	0.8	2
38	Selective Production of Acid-form Sophorolipids from Glycerol by <i>Candida floricola</i> . Journal of Oleo Science, 2017, 66, 1365-1373.	0.6	22
39	Synthesis and Characterization of Dioctanoyl Glycerate as Water-soluble Trypsin Inhibitor. Journal of Oleo Science, 2016, 65, 251-256.	0.6	2
40	Biodegradable Plastic-degrading Activity of Various Species of <i>Paraphoma</i> . Journal of Oleo Science, 2016, 65, 621-627.	0.6	8
41	Draft Genome Sequence of the Fungus Paraphoma sp. B47-9, a Producer of a Biodegradable Plastic–Degrading Enzyme. Genome Announcements, 2016, 4, .	0.8	2
42	Draft Genome Sequence of Burkholderia stabilis LA20W, a Trehalose Producer That Uses Levulinic Acid as a Substrate. Genome Announcements, 2016, 4, .	0.8	1
43	High-level recombinant protein production by the basidiomycetous yeast Pseudozyma antarctica under a xylose-inducible xylanase promoter. Applied Microbiology and Biotechnology, 2016, 100, 3207-3217.	1.7	20
44	A Gene Cluster for Biosynthesis of Mannosylerythritol Lipids Consisted of 4-O-Î ² -D-Mannopyranosyl-(2R,3S)-Erythritol as the Sugar Moiety in a Basidiomycetous Yeast Pseudozyma tsukubaensis. PLoS ONE, 2016, 11, e0157858.	1.1	25
45	Simultaneous bioethanol distillery wastewater treatment and xylanase production by the phyllosphere yeast Pseudozyma antarctica GB-4(0). AMB Express, 2015, 5, 121.	1.4	23
46	Mannosylerythritol Lipids: Production and Applications. Journal of Oleo Science, 2015, 64, 133-141.	0.6	81
47	Bacterial production of short-chain organic acids and trehalose from levulinic acid: A potential cellulose-derived building block as a feedstock for microbial production. Bioresource Technology, 2015, 177, 381-386.	4.8	25
48	Draft Genome Sequence of the Yeast <i>Starmerella bombicola</i> NBRC10243, a Producer of Sophorolipids, Glycolipid Biosurfactants. Genome Announcements, 2015, 3, .	0.8	10
49	Microbial resolution of dl-glyceric acid for l-glyceric acid production with newly isolated bacterial strains. Journal of Bioscience and Bioengineering, 2015, 119, 554-557.	1.1	7
50	Isolation and characterization of bacterial strains with the ability to utilize high concentrations of levulinic acid, a platform chemical from inedible biomass. Bioscience, Biotechnology and Biochemistry, 2015, 79, 1552-1555.	0.6	11
51	Selective formation of mannosyl-l-arabitol lipid by Pseudozyma tsukubaensis JCM16987. Applied Microbiology and Biotechnology, 2015, 99, 5833-5841.	1.7	12
52	Genome and Transcriptome Analysis of the Basidiomycetous Yeast Pseudozyma antarctica Producing Extracellular Glycolipids, Mannosylerythritol Lipids. PLoS ONE, 2014, 9, e86490.	1.1	45
53	Spontaneous Vesicle Formation from Sodium Salt of Acidic Sophorolipid and Its Application as a Skin Penetration Enhancer. Journal of Oleo Science, 2014, 63, 141-147.	0.6	17
54	Monolayer Behavior of Binary Systems of Lactonic and Acidic Forms of Sophorolipids: Thermodynamic Analyses of Langmuir Monolayers and AFM Study of Langmuir^ ^ndash;Blodgett Monolayers. Journal of Oleo Science, 2014, 63, 67-73.	0.6	7

#	Article	IF	CITATIONS
55	Production of Glycolipid Biosurfactants and Their Potential Applications. Oleoscience, 2014, 14, 465-472.	0.0	О
56	Draft Genome Sequence of the Yeast <i>Pseudozyma antarctica</i> Type Strain JCM10317, a Producer of the Glycolipid Biosurfactants, Mannosylerythritol Lipids. Genome Announcements, 2014, 2, .	0.8	25
57	Draft Genome Sequence of Acetobacter tropicalis Type Strain NBRC16470, a Producer of Optically Pure d -Glyceric Acid. Genome Announcements, 2014, 2, .	0.8	2
58	Selective production of two diastereomers of disaccharide sugar alcohol, mannosylerythritol by Pseudozyma yeasts. Applied Microbiology and Biotechnology, 2014, 98, 823-830.	1.7	9
59	Production of d-arabitol from raw glycerol by Candida quercitrusa. Applied Microbiology and Biotechnology, 2014, 98, 2947-2953.	1.7	26
60	Production of mannitol from raw glycerol by Candida azyma. Journal of Bioscience and Bioengineering, 2014, 117, 725-729.	1.1	22
61	Biosurfactant-producing yeasts widely inhabit various vegetables and fruits. Bioscience, Biotechnology and Biochemistry, 2014, 78, 516-523.	0.6	16
62	Mannosylerythritol lipids secreted by phyllosphere yeast Pseudozyma antarctica is associated with its filamentous growth and propagation on plant surfaces. Applied Microbiology and Biotechnology, 2014, 98, 6419-6429.	1.7	20
63	Aqueous Gel Formation from Sodium Salts of Cellobiose Lipids. Journal of Oleo Science, 2014, 63, 1005-1010.	0.6	16
64	Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, <i>Pseudozyma aphidis</i>)and <i>Pseudozyma hubeiensis</i>). FEMS Yeast Research, 2013, 13, 44-49.	1.1	38
65	Biodegradable plastic-degrading enzyme from Pseudozyma antarctica: cloning, sequencing, and characterization. Applied Microbiology and Biotechnology, 2013, 97, 2951-2959.	1.7	88
66	Production of mannosylerythritol lipids and their application in cosmetics. Applied Microbiology and Biotechnology, 2013, 97, 4691-4700.	1.7	99
67	Genome Sequence of the Basidiomycetous Yeast <i>Pseudozyma antarctica</i> T-34, a Producer of the Glycolipid Biosurfactants Mannosylerythritol Lipids. Genome Announcements, 2013, 1, e0006413.	0.8	65
68	Production of Sophorolipids from Non-edible Jatropha Oil by Stamerella bombicola NBRC 10243 and Evaluation of their Interfacial Properties. Journal of Oleo Science, 2013, 62, 857-864.	0.6	26
69	Production of a Novel Mannosylerythritol Lipid Containing a Hydroxy Fatty Acid from Castor Oil by Pseudozyma tsukubaensis. Journal of Oleo Science, 2013, 62, 381-389.	0.6	28
70	Characterization of Mannosylerythritol Lipids Containing Hexadecatetraenoic Acid Produced from Cuttlefish Oil by Pseudozyma churashimaensis OK96. Journal of Oleo Science, 2013, 62, 319-327.	0.6	12
71	Isolation and Screening of Glycolipid Biosurfactant Producers from Sugarcane. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1788-1791.	0.6	15
72	Formation of the two novel glycolipid biosurfactants, mannosylribitol lipid and mannosylarabitol lipid, by Pseudozyma parantarctica JCM 11752T. Applied Microbiology and Biotechnology, 2012, 96, 931-938.	1.7	42

#	Article	IF	CITATIONS
73	Reverse vesicle formation from the yeast glycolipid biosurfactant mannosylerythritol lipid-D. Journal of Oleo Science, 2012, 61, 285-289.	0.6	9
74	Low Molecular Weight Gelators Based on Biosurfactants, Cellobiose Lipids by Cryptococcus humicola. Journal of Oleo Science, 2012, 61, 659-664.	0.6	16
75	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H2O2-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. Journal of Oleo Science, 2012, 61, 457-464.	0.6	102
76	The Moisturizing Effects of Glycolipid Biosurfactants, Mannosylerythritol Lipids, on Human Skin. Journal of Oleo Science, 2012, 61, 407-412.	0.6	65
77	The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration. Carbohydrate Research, 2012, 351, 81-86.	1.1	32
78	Production of Glycolipid Biosurfactants, Cellobiose Lipids, by <i>Cryptococcus humicola</i> JCM 1461 and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1597-1599.	0.6	44
79	Production and Characterization of a Glycolipid Biosurfactant, Mannosylerythritol Lipid B, from Sugarcane Juice by <i>Ustilago scitaminea </i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2011, 75, 1371-1376.	0.6	42
80	Production of Sophorolipid Glycolipid Biosurfactants from Sugarcane Molasses Using <i>Starmerella bombicola</i> NBRC 10243. Journal of Oleo Science, 2011, 60, 267-273.	0.6	59
81	Identification of a galactoseâ€specific flocculin essential for nonâ€sexual flocculation and filamentous growth in <i>Schizosaccharomyces pombe</i>). Molecular Microbiology, 2011, 82, 1531-1544.	1.2	33
82	Phyllosphere yeasts rapidly break down biodegradable plastics. AMB Express, 2011, 1, 44.	1.4	76
83	Yeast extract stimulates production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma hubeiensis SY62. Journal of Bioscience and Bioengineering, 2011, 111, 702-705.	1.1	49
84	Isolation of Pseudozyma churashimaensis sp. nov., a novel ustilaginomycetous yeast species as a producer of glycolipid biosurfactants, mannosylerythritol lipids. Journal of Bioscience and Bioengineering, 2011, 112, 137-144.	1.1	51
85	Enzymatic synthesis of a novel glycolipid biosurfactant, mannosylerythritol lipid-D and its aqueous phase behavior. Carbohydrate Research, 2011, 346, 266-271.	1.1	42
86	Enzymatic Conversion of Diacetylated Sophoroselipid into Acetylated Glucoselipid: Surface-Active Properties of Novel Bolaform Biosurfactants. Journal of Oleo Science, 2010, 59, 495-501.	0.6	33
87	Glycolipid Biosurfactants, Mannosylerythritol Lipids, Repair the Damaged Hair. Journal of Oleo Science, 2010, 59, 267-272.	0.6	73
88	Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B. Applied Microbiology and Biotechnology, 2010, 88, 679-688.	1.7	49
89	Biosurfactant-producing yeast isolated from Calyptogena soyoae (deep-sea cold-seep clam) in the deep sea. Journal of Bioscience and Bioengineering, 2010, 110, 169-175.	1.1	28
90	The role of <i>PaAAC1</i> encoding a mitochondrial ADP/ATP carrier in the biosynthesis of extracellular glycolipids, mannosylerythritol lipids, in the basidiomycetous yeast <i>Pseudozyma antarctica</i> Yeast, 2010, 27, 379-388.	0.8	6

#	Article	IF	CITATIONS
91	Identification of the gene <i>PaEMT1</i> for biosynthesis of mannosylerythritol lipids in the basidiomycetous yeast <i>Pseudozyma antarctica</i> Yeast, 2010, 27, 905-917.	0.8	27
92	Activation of Fibroblast and Papilla Cells by Glycolipid Biosurfactants, Mannosylerythritol Lipids Journal of Oleo Science, 2010, 59, 451-455.	0.6	29
93	Mannosylinositol phosphorylceramide is a major sphingolipid component and is required for proper localization of plasma-membrane proteins in <i>Schizosaccharomyces pombe</i>). Journal of Cell Science, 2010, 123, 1578-1587.	1.2	47
94	Disruption of the Membrane-Bound Alcohol Dehydrogenase-Encoding Gene Improved Glycerol Use and Dihydroxyacetone Productivity in <i>Gluconobacter oxydans</i> Bioscience, Biotechnology and Biochemistry, 2010, 74, 1391-1395.	0.6	31
95	Development of Microbial Biosurfactants Contributing to Low-Carbon Society. Journal of the Japan Society of Colour Material, 2010, 83, 76-81.	0.0	0
96	Detection of Acetyl Monoglyceride as a Metabolite of Newly Isolated Glycerol-assimilating Bacteria. Journal of Oleo Science, 2009, 58, 147-154.	0.6	5
97	Processing of ethanol fermentation broths by <i>Candida krusei⟨ i⟩ to separate bioethanol by pervaporation using silicone rubberâ€coated silicalite membranes. Journal of Chemical Technology and Biotechnology, 2009, 84, 1172-1177.</i>	1.6	13
98	Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties. Applied Microbiology and Biotechnology, 2009, 83, 1017-1025.	1.7	62
99	Self-assembling properties of glycolipid biosurfactants and their potential applications. Current Opinion in Colloid and Interface Science, 2009, 14, 315-328.	3.4	246
100	Phase behavior of ternary mannosylerythritol lipid/water/oil systems. Colloids and Surfaces B: Biointerfaces, 2009, 68, 207-212.	2.5	37
101	Production of glycolipid biosurfactants by basidiomycetous yeasts. Biotechnology and Applied Biochemistry, 2009, 53, 39.	1.4	65
102	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, by a Smut Fungus, <i>Ustilago scitaminea </i> NBRC 32730. Bioscience, Biotechnology and Biochemistry, 2009, 73, 788-792.	0.6	37
103	Production of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Using Sucrose by Fungal and Yeast Strains, and Their Interfacial Properties. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2352-2355.	0.6	25
104	A Yeast Glycolipid Biosurfactant, Mannosylerythritol Lipid, Shows Potential Moisturizing Activity toward Cultured Human Skin Cells: The Recovery Effect of MEL-A on the SDS-damaged Human Skin Cells. Journal of Oleo Science, 2009, 58, 639-642.	0.6	63
105	Structural Characterization and Surface-Active Properties of a Succinoyl Trehalose Lipid Produced by Rhodococcus sp. SD-74. Journal of Oleo Science, 2009, 58, 97-102.	0.6	64
106	Efficient production of mannosylerythritol lipids with high hydrophilicity by Pseudozyma hubeiensis KM-59. Applied Microbiology and Biotechnology, 2008, 78, 37-46.	1.7	65
107	Aqueous-phase behavior and vesicle formation of natural glycolipid biosurfactant, mannosylerythritol lipid-B. Colloids and Surfaces B: Biointerfaces, 2008, 65, 106-112.	2.5	60
108	A basidiomycetous yeast, Pseudozyma tsukubaensis, efficiently produces a novel glycolipid biosurfactant. The identification of a new diastereomer of mannosylerythritol lipid-B. Carbohydrate Research, 2008, 343, 555-560.	1.1	86

#	Article	IF	Citations
109	A basidiomycetous yeast, Pseudozyma crassa, produces novel diastereomers of conventional mannosylerythritol lipids as glycolipid biosurfactants. Carbohydrate Research, 2008, 343, 2947-2955.	1.1	34
110	<i>Candida krusei</i> produces ethanol without production of succinic acid; a potential advantage for ethanol recovery by pervaporation membrane separation. FEMS Yeast Research, 2008, 8, 706-714.	1.1	25
111	Identification of the <i>fnx1</i> ⁺ and <i>fnx2</i> ⁺ genes for vacuolar amino acid transporters in <i>Schizosaccharomyces pombe</i> FEBS Letters, 2008, 582, 2225-2230.	1.3	21
112	Multiple functions of ergosterol in the fission yeast Schizosaccharomyces pombe. Microbiology (United Kingdom), 2008, 154, 830-841.	0.7	76
113	Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties. Journal of Bioscience and Bioengineering, 2008, 105, 493-502.	1.1	70
114	Formation of W/O Microemulsion Based on Natural Glycolipid Biosurfactant, Mannosylerythritol Lipid-A. Journal of Oleo Science, 2008, 57, 55-59.	0.6	24
115	Identification of Pseudozyma graminicola CBS 10092 as a Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids. Journal of Oleo Science, 2008, 57, 123-131.	0.6	49
116	Efficient Production of Di- and Tri-acylated Mannosylerythritol Lipids as Glycolipid Biosurfactants by Pseudozyma parantarctica JCM 11752T. Journal of Oleo Science, 2008, 57, 557-565.	0.6	40
117	Isolation and Characterization of Thermotolerant Fungi Producing Lignoceric Acid from Glycerol. Journal of Oleo Science, 2008, 57, 251-255.	0.6	7
118	Packing Density of Glycolipid Biosurfactant Monolayers Give a Significant Effect on Their Binding Affinity Toward Immunoglobulin G. Journal of Oleo Science, 2008, 57, 415-422.	0.6	17
119	Identification of Ustilago cynodontis as a New Producer of Glycolipid Biosurfactants, Mannosylerythritol Lipids, Based on Ribosomal DNA Sequences. Journal of Oleo Science, 2008, 57, 549-556.	0.6	25
120	Production of New Types of Sophorolipids by <i>Candida batistae</i> . Journal of Oleo Science, 2008, 57, 359-369.	0.6	134
121	Characterization of New Types of Mannosylerythritol Lipids as Biosurfactants Produced from Soybean Oil by a Basidiomycetous Yeast, Pseudozyma shanxiensis. Journal of Oleo Science, 2007, 56, 435-442.	0.6	62
122	Convenient Transformation of Anamorphic Basidiomycetous Yeasts Belonging to Genus Pseudozyma Induced by Electroporation. Journal of Bioscience and Bioengineering, 2007, 104, 517-520.	1.1	20
123	Microbial conversion of glycerol into glycolipid biosurfactants, mannosylerythritol lipids, by a basidiomycete yeast, Pseudozyma antarctica JCM 10317T. Journal of Bioscience and Bioengineering, 2007, 104, 78-81.	1.1	93
124	Loss of a GPI-Anchored Membrane Protein Aah3p Causes a Defect in Vacuolar Protein Sorting inSchizosaccharomyces pombe. Bioscience, Biotechnology and Biochemistry, 2007, 71, 623-626.	0.6	3
125	Kinetic studies on the interactions between glycolipid biosurfactant assembled monolayers and various classes of immunoglobulins using surface plasmon resonance. Colloids and Surfaces B: Biointerfaces, 2007, 58, 165-171.	2.5	54
126	Characterization of the genusPseudozymaby the formation of glycolipid biosurfactants, mannosylerythritol lipids. FEMS Yeast Research, 2007, 7, 286-292.	1.1	115

#	Article	IF	CITATIONS
127	Physiological differences in the formation of the glycolipid biosurfactants, mannosylerythritol lipids, between Pseudozyma antarctica and Pseudozyma aphidis. Applied Microbiology and Biotechnology, 2007, 74, 307-315.	1.7	71
128	Production of different types of mannosylerythritol lipids as biosurfactants by the newly isolated yeast strains belonging to the genus Pseudozyma. Applied Microbiology and Biotechnology, 2007, 75, 521-531.	1.7	97
129	Structural characterization and surface-active properties of a new glycolipid biosurfactant, mono-acylated mannosylerythritol lipid, produced from glucose by Pseudozyma antarctica. Applied Microbiology and Biotechnology, 2007, 76, 801-810.	1.7	88
130	A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows high binding affinity towards lectins on a self-assembled monolayer system. Biotechnology Letters, 2007, 29, 473-480.	1.1	60
131	Characterization of new glycolipid biosurfactants, tri-acylated mannosylerythritol lipids, produced by Pseudozyma yeasts. Biotechnology Letters, 2007, 29, 1111-1118.	1.1	62
132	Analysis of expressed sequence tags from the anamorphic basidiomycetous yeast, Pseudozyma antarctica, which produces glycolipid biosurfactants, mannosylerythritol lipids. Yeast, 2006, 23, 661-671.	0.8	24
133	Discovery of Pseudozyma rugulosa NBRC 10877 as a novel producer of the glycolipid biosurfactants, mannosylerythritol lipids, based on rDNA sequence. Applied Microbiology and Biotechnology, 2006, 73, 305-313.	1.7	115
134	An α-Amylase Homologue,aah3, Encodes a GPI-Anchored Membrane Protein Required for Cell Wall Integrity and Morphogenesis inSchizosaccharomyces pombe. Bioscience, Biotechnology and Biochemistry, 2006, 70, 1454-1463.	0.6	18
135	Disruption of the plr1 + Gene Encoding Pyridoxal Reductase of Schizosaccharomyces pombe. Journal of Biochemistry, 2004, 135, 225-230.	0.9	25
136	A simple and efficient procedure for transformation of Schizosaccharomyces pombe. Yeast, 2004, 21, 613-617.	0.8	73
137	Identification of a SNARE protein required for vacuolar protein transport in Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 2003, 311, 77-82.	1.0	14
138	Inhibition of Diphenolase Activity of Tyrosinase by Vitamin B6Compounds. Journal of Agricultural and Food Chemistry, 2003, 51, 2733-2736.	2.4	23
139	Vesicle-mediated Protein Transport Pathways to the Vacuole in Schizosaccharomyces pombe. Cell Structure and Function, 2003, 28, 399-417.	0.5	46
140	Purification and Characterization of Pyridoxal 4-Dehydrogenase from Aureobacterium luteolum. Bioscience, Biotechnology and Biochemistry, 2002, 66, 543-548.	0.6	10
141	Characterization of Recombinant YakC of Schizosaccharomyces pombe Showing YakC Defines A New Family of Aldo-keto Reductases. Journal of Biochemistry, 2002, 132, 635-641.	0.9	9
142	Purification, Molecular Cloning, and Catalytic Activity of Schizosaccharomyces pombe Pyridoxal Reductase. Journal of Biological Chemistry, 1999, 274, 23185-23190.	1.6	30