Rachel M Mcloughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9361256/publications.pdf

Version: 2024-02-01

74 papers

5,846 citations

35 h-index 91872 69 g-index

74 all docs

74 docs citations

times ranked

74

8768 citing authors

#	Article	IF	CITATIONS
1	IL-6 and Its Soluble Receptor Orchestrate a Temporal Switch in the Pattern of Leukocyte Recruitment Seen during Acute Inflammation. Immunity, 2001, 14, 705-714.	14.3	718
2	IL-6 Regulates Neutrophil Trafficking during Acute Inflammation via STAT3. Journal of Immunology, 2008, 181, 2189-2195.	0.8	351
3	Pneumolysin Activates the NLRP3 Inflammasome and Promotes Proinflammatory Cytokines Independently of TLR4. PLoS Pathogens, 2010, 6, e1001191.	4.7	314
4	Interleukin-6 Signaling Drives Fibrosis in Unresolved Inflammation. Immunity, 2014, 40, 40-50.	14.3	297
5	Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF- \hat{l}^2 signaling. Nature Medicine, 2005, 11, 845-852.	30.7	284
6	IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9589-9594.	7.1	282
7	Relative Contribution of Th1 and Th17 Cells in Adaptive Immunity to Bordetella pertussis: Towards the Rational Design of an Improved Acellular Pertussis Vaccine. PLoS Pathogens, 2013, 9, e1003264.	4.7	273
8	A bacterial carbohydrate links innate and adaptive responses through Toll-like receptor 2. Journal of Experimental Medicine, 2006, 203, 2853-2863.	8.5	245
9	Interplay between IFN- \hat{l}^3 and IL-6 signaling governs neutrophil trafficking and apoptosis during acute inflammation. Journal of Clinical Investigation, 2003, 112, 598-607.	8.2	229
10	Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 1097-1107.	2.9	187
11	Staphylococcus aureus Colonization: Modulation of Host Immune Response and Impact on Human Vaccine Design. Frontiers in Immunology, 2014, 4, 507.	4.8	167
12	Loss of CD4+ T Cell IL-6R Expression during Inflammation Underlines a Role for IL-6 <i>Trans</i> Signaling in the Local Maintenance of Th17 Cells. Journal of Immunology, 2010, 184, 2130-2139.	0.8	166
13	Nasal Colonisation by Staphylococcus aureus Depends upon Clumping Factor B Binding to the Squamous Epithelial Cell Envelope Protein Loricrin. PLoS Pathogens, 2012, 8, e1003092.	4.7	133
14	Memory Th1 Cells Are Protective in Invasive Staphylococcus aureus Infection. PLoS Pathogens, 2015, 11, e1005226.	4.7	132
15	Differential Regulation of Neutrophil-Activating Chemokines by IL-6 and Its Soluble Receptor Isoforms. Journal of Immunology, 2004, 172, 5676-5683.	0.8	129
16	<i>Staphylococcus aureus</i> Infection of Mice Expands a Population of Memory γδT Cells That Are Protective against Subsequent Infection. Journal of Immunology, 2014, 192, 3697-3708.	0.8	120
17	CD4+ T cells and CXC chemokines modulate the pathogenesis of Staphylococcus aureus wound infections. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10408-10413.	7.1	104
18	IFN-Î ³ Regulated Chemokine Production Determines the Outcome of <i>Staphylococcus aureus</i> Infection. Journal of Immunology, 2008, 181, 1323-1332.	0.8	97

#	Article	IF	CITATIONS
19	The Role of Staphylococcus aureus Virulence Factors in Skin Infection and Their Potential as Vaccine Antigens. Pathogens, 2016, 5, 22.	2.8	94
20	TRAM Is Required for TLR2 Endosomal Signaling to Type I IFN Induction. Journal of Immunology, 2014, 193, 6090-6102.	0.8	92
21	Nitrolinoleate Inhibits Platelet Activation by Attenuating Calcium Mobilization and Inducing Phosphorylation of Vasodilator-stimulated Phosphoprotein through Elevation of cAMP. Journal of Biological Chemistry, 2002, 277, 5832-5840.	3.4	89
22	Functional characterization of a soluble gp130 isoform and its therapeutic capacity in an experimental model of inflammatory arthritis. Arthritis and Rheumatism, 2006, 54, $1662-1672$.	6.7	89
23	Effects of Conventional and New Peritoneal Dialysis Fluids on Leukocyte Recruitment in the Rat Peritoneal Membrane. Journal of the American Society of Nephrology: JASN, 2003, 14, 1296-1306.	6.1	86
24	Manipulation of Autophagy in Phagocytes Facilitates Staphylococcus aureus Bloodstream Infection. Infection and Immunity, 2015, 83, 3445-3457.	2.2	81
25	Host–Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends in Microbiology, 2016, 24, 872-886.	7.7	79
26	Nlrp-3-Driven Interleukin 17 Production by $\hat{I}^3\hat{I}$ T Cells Controls Infection Outcomes during Staphylococcus aureus Surgical Site Infection. Infection and Immunity, 2013, 81, 4478-4489.	2.2	69
27	IL-10 Plays Opposing Roles during <i>Staphylococcus aureus</i> Systemic and Localized Infections. Journal of Immunology, 2017, 198, 2352-2365.	0.8	65
28	Memory γδT Cells–Newly Appreciated Protagonists in Infection and Immunity. Trends in Immunology, 2016, 37, 690-702.	6.8	57
29	Staphylococcus aureus and Influenza A Virus: Partners in Coinfection. MBio, 2016, 7, .	4.1	54
30	Bacterial toxins: Offensive, defensive, or something else altogether? PLoS Pathogens, 2017, 13, e1006452.	4.7	53
31	The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 312, L855-L860.	2.9	50
32	Staphylococcus aureus Vaccine Research and Development: The Past, Present and Future, Including Novel Therapeutic Strategies. Frontiers in Immunology, 2021, 12, 705360.	4.8	48
33	Clumping factor B is an important virulence factor during Staphylococcus aureus skin infection and a promising vaccine target. PLoS Pathogens, 2019, 15, e1007713.	4.7	40
34	Bacteroides fragilis–Stimulated Interleukin-10 Contains Expanding Disease. Journal of Infectious Diseases, 2011, 204, 363-371.	4.0	39
35	Targeted Nasal Vaccination Provides Antibody-Independent Protection Against Staphylococcus aureus. Journal of Infectious Diseases, 2014, 209, 1479-1484.	4.0	39
36	Considering the †Alternatives†for Next-Generation Anti-Staphylococcus aureus Vaccine Development. Trends in Molecular Medicine, 2019, 25, 171-184.	6.7	38

#	Article	IF	CITATIONS
37	Toll-like receptor 2–dependent endosomal signaling by Staphylococcus aureus in monocytes induces type I interferon and promotes intracellular survival. Journal of Biological Chemistry, 2019, 294, 17031-17042.	3.4	36
38	A population of proinflammatory T cells coexpresses $\hat{l} \pm \hat{l}^2$ and $\hat{l}^3\hat{l}'$ T cell receptors in mice and humans. Journal of Experimental Medicine, 2020, 217, .	8.5	33
39	The Zwitterionic Cell Wall Teichoic Acid of Staphylococcus aureus Provokes Skin Abscesses in Mice by a Novel CD4+ T-Cell-Dependent Mechanism. PLoS ONE, 2010, 5, e13227.	2.5	32
40	Viral IL-6 Blocks Neutrophil Infiltration during Acute Inflammation. Journal of Immunology, 2005, 175, 4024-4029.	0.8	31
41	Nitric oxide synthase isoforms play distinct roles during acute peritonitis. Nephrology Dialysis Transplantation, 2010, 25, 86-96.	0.7	30
42	Longitudinal relationship of early life immunomodulatory T cell phenotype and function to development of allergic sensitization in an urban cohort. Clinical and Experimental Allergy, 2012, 42, 392-404.	2.9	23
43	Hyaluronic Acid Binding Peptides Prevent Experimental Staphylococcal Wound Infection. Antimicrobial Agents and Chemotherapy, 2006, 50, 3856-3860.	3.2	22
44	Characterization of regulatory T cells in urban newborns. Clinical and Molecular Allergy, 2009, 7, 8.	1.8	21
45	Next-generation anti–Staphylococcus aureus vaccines: AÂpotential new therapeutic option for atopic dermatitis?. Journal of Allergy and Clinical Immunology, 2019, 143, 78-81.	2.9	19
46	The Staphylococcus aureus Cell Wall-Anchored Protein Clumping Factor A Is an Important T Cell Antigen. Infection and Immunity, 2017, 85, .	2.2	18
47	Inhibition of Nitric Oxide Synthase Reverses Permeability Changes in a Mouse Model of Acute Peritonitis. Peritoneal Dialysis International, 2005, 25, 11-14.	2.3	16
48	Making the Most of the Host; Targeting the Autophagy Pathway Facilitates Staphylococcus aureus Intracellular Survival in Neutrophils. Frontiers in Immunology, 2021, 12, 667387.	4.8	16
49	Severe COVID-19 is characterised by inflammation and immature myeloid cells early in disease progression. Heliyon, 2022, 8, e09230.	3.2	16
50	Activation of Human $V\hat{i}^2 + \hat{i}^3\hat{i}^T$ Cells by <i>Staphylococcus aureus</i> Promotes Enhanced Anti-Staphylococcal Adaptive Immunity. Journal of Immunology, 2020, 205, 1039-1049.	0.8	14
51	Manipulation of Autophagy and Apoptosis Facilitates Intracellular Survival of Staphylococcus aureus in Human Neutrophils. Frontiers in Immunology, 2020, 11, 565545.	4.8	14
52	Targeting Skin-Resident Memory T Cells via Vaccination to Combat Staphylococcus aureus Infections. Trends in Immunology, 2021, 42, 6-17.	6.8	14
53	In vivo relevance of polymorphic Interleukin 8 promoter haplotype for the systemic immune response to LPS in Holstein-Friesian calves. Veterinary Immunology and Immunopathology, 2016, 182, 1-10.	1.2	11
54	Modulation of the Local Neutrophil Response by a Novel Hyaluronic Acid-Binding Peptide Reduces Bacterial Burden during Staphylococcal Wound Infection. Infection and Immunity, 2010, 78, 4176-4186.	2.2	9

#	Article	IF	CITATIONS
55	Target the Host, Kill the Bug; Targeting Host Respiratory Immunosuppressive Responses as a Novel Strategy to Improve Bacterial Clearance During Lung Infection. Frontiers in Immunology, 2020, 11, 767.	4.8	9
56	The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clinical Reviews in Allergy and Immunology, 2023, 64, 161-178.	6.5	9
57	Interleukin 8 haplotypes drive divergent responses in uterine endometrial cells and are associated with somatic cell score in Holstein-Friesian cattle. Veterinary Immunology and Immunopathology, 2017, 184, 18-28.	1.2	8
58	Switching on EMT in the peritoneal membrane: considering the evidence. Nephrology Dialysis Transplantation, 2011, 26, 12-15.	0.7	7
59	Staphylococcal Protein A Induces Leukocyte Necrosis by Complexing with Human Immunoglobulins. MBio, 2021, 12, e0089921.	4.1	7
60	Staphylococcus aureus-induced immunosuppression mediated by IL-10 and IL-27 facilitates nasal colonisation. PLoS Pathogens, 2022, 18, e1010647.	4.7	7
61	Application of the TruCulture \hat{A}^{\otimes} whole blood stimulation system for immune response profiling in cattle. Veterinary Immunology and Immunopathology, 2020, 221, 110025.	1.2	5
62	Human MAIT Cells Respond to Staphylococcus aureus with Enhanced Anti-Bacterial Activity. Microorganisms, 2022, 10, 148.	3.6	5
63	Targeted control of pneumolysin production by a mobile genetic element in Streptococcus pneumoniae. Microbial Genomics, 2022, 8, .	2.0	5
64	Effect of IL-8 haplotype on temporal profile in circulating concentrations of interleukin 8 and 25(OH) vitamin D in Holstein-Friesian calves. Veterinary Immunology and Immunopathology, 2021, 238, 110287.	1,2	4
65	Resolving Peritoneal Inflammation: Flicking the Right "Switches― Peritoneal Dialysis International, 2005, 25, 223-229.	2.3	3
66	The immune response in bovine primary dermal fibroblasts is influenced by Interleukin 8 promoter haplotype and vitamin D. Veterinary Immunology and Immunopathology, 2021, 238, 110291.	1.2	3
67	Inhibition of nitric oxide synthase reverses permeability changes in a mouse model of acute peritonitis. Peritoneal Dialysis International, 2005, 25 Suppl 3, S11-4.	2.3	3
68	Immunomodulation by zwitterionic polysaccharides. , 2010, , 957-980.		2
69	Resolving peritoneal inflammation: flicking the right "switches". Peritoneal Dialysis International, 2005, 25, 223-9.	2.3	2
70	Early Peritoneal Responses to Bacterial Invasion: Cellular Exudation. Sepsis, 1999, 3, 303-309.	0.5	1
71	Would hemodialysis patients benefit from aÂStaphylococcus aureus vaccine?. Kidney International, 2019, 95, 518-525.	5.2	1
72	The Immune System: Defenders of Our Health. FASEB Journal, 2008, 22, 660.6.	0.5	0

#	Article	IF	CITATIONS
73	The Importance of Cell Mediated Immunity for Bacterial Vaccines. , 2015, , 219-250.		0
74	Immune Response to Staphylococcus aureus. , 2016, , 335-388.		0