Svetlana Ivanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360928/publications.pdf

Version: 2024-02-01

109321 155660 3,612 108 35 55 citations h-index g-index papers 111 111 111 4102 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A new preparation method for the formation of gold nanoparticles on an oxide support. Applied Catalysis A: General, 2004, 267, 191-201.	4.3	230
2	Unravelling the Role of Oxygen Vacancies in the Mechanism of the Reverse Water–Gas Shift Reaction by ⟨i⟩Operando⟨/i⟩ DRIFTS and Ultraviolet–Visible Spectroscopy. ACS Catalysis, 2018, 8, 7455-7467.	11.2	178
3	Preparation of alumina supported gold catalysts: Influence of washing procedures, mechanism of particles size growth. Applied Catalysis A: General, 2006, 298, 57-64.	4.3	107
4	Pt vs. Au in water–gas shift reaction. Journal of Catalysis, 2014, 314, 1-9.	6.2	103
5	Identification of irradiation treatment of aromatic herbs, spices and fruits by electron paramagnetic resonance and thermoluminescence. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2000, 56, 409-416.	3.9	101
6	ZSM-5 Coatings on β-SiC Monoliths:  Possible New Structured Catalyst for the Methanol-to-Olefins Process. Journal of Physical Chemistry C, 2007, 111, 4368-4374.	3.1	101
7	Hydrogen production by methanol steam reforming on NiSn/MgO–Al2O3 catalysts: The role of MgO addition. Applied Catalysis A: General, 2011, 392, 184-191.	4.3	97
8	Cu-modified cryptomelane oxide as active catalyst for CO oxidation reactions. Applied Catalysis B: Environmental, 2012, 123-124, 27-35.	20.2	95
9	Selective hydrogenation of crotonaldehyde on Au/HSA-CeO2 catalysts. Journal of Catalysis, 2006, 242, 162-171.	6.2	76
10	Sub-ambient CO oxidation over mesoporous Co3O4: Effect of morphology on its reduction behavior and catalytic performance. Applied Catalysis A: General, 2012, 431-432, 9-17.	4.3	76
11	Influence of the zeolite synthesis route on its catalytic properties in the methanol to olefin reaction. Journal of Catalysis, 2009, 265, 1-7.	6.2	75
12	Application of the direct exchange method in the preparation of gold catalysts supported on different oxide materials. Journal of Molecular Catalysis A, 2006, 256, 278-283.	4.8	71
13	Modified cryptomelane-type manganese dioxide nanomaterials for preferential oxidation of CO in the presence of hydrogen. Catalysis Today, 2010, 157, 160-165.	4.4	71
14	Functionalized biochars as supports for Pd/C catalysts for efficient hydrogen production from formic acid. Applied Catalysis B: Environmental, 2021, 282, 119615.	20.2	68
15	Autoassembly of Nanofibrous Zeolite Crystals via Silicon Carbide Substrate Self-Transformation. Journal of the American Chemical Society, 2007, 129, 3383-3391.	13.7	66
16	Gold promoted Cu/ZnO/Al2O3 catalysts prepared from hydrotalcite precursors: Advanced materials for the WGS reaction. Applied Catalysis B: Environmental, 2017, 201, 310-317.	20.2	61
17	Support Effects in the Goldâ€Catalyzed Preferential Oxidation of CO. ChemCatChem, 2010, 2, 556-563.	3.7	58
18	Au/CeO2 Catalysts: Structure and CO Oxidation Activity. Catalysts, 2016, 6, 158.	3.5	58

#	Article	IF	CITATIONS
19	Mono and bimetallic Cu-Ni structured catalysts for the water gas shift reaction. Applied Catalysis A: General, 2015, 497, 1-9.	4.3	55
20	Understanding the Role of the Acid Sites in 5-Hydroxymethylfurfural Oxidation to 2,5-Furandicarboxylic Acid Reaction over Gold Catalysts: Surface Investigation on Ce _{<i>x</i>} Zr _{1–<i>x</i>} O ₂ Compounds. ACS Catalysis, 2018, 8, 11154-11164.	11.2	55
21	Dehydration of glucose to 5-Hydroxymethlyfurfural on bifunctional carbon catalysts. Applied Catalysis B: Environmental, 2021, 286, 119938.	20.2	55
22	WGS and CO-PrOx reactions using gold promoted copper-ceria catalysts: "Bulk CuO CeO2 vs. CuO CeO2/Al2O3 with low mixed oxide content― Applied Catalysis B: Environmental, 2016, 197, 62-72.	20.2	53
23	Well-Defined Negatively Charged Gold Carbonyls on Au/SiO ₂ . Journal of Physical Chemistry C, 2011, 115, 21273-21282.	3.1	50
24	The role of Au, Cu & Deplied Catalysis B: Environmental, 2016, 187, 98-107.	20.2	49
25	Preparation of alumina supported gold catalysts: Gold complexes genesis, identification and speciation by mass spectrometry. Applied Catalysis A: General, 2006, 298, 203-210.	4.3	48
26	Gold catalysts screening in base-free aerobic oxidation of glucose to gluconic acid. Catalysis Today, 2017, 279, 148-154.	4.4	48
27	Efficient Synthesis of Dimethyl Ether over HZSMâ€5 Supported on Mediumâ€6urfaceâ€Area βâ€6iC Foam. ChemSusChem, 2008, 1, 851-857.	6.8	47
28	Boosting the activity of a Au/CeO2/Al2O3 catalyst for the WGS reaction. Catalysis Today, 2015, 253, 149-154.	4.4	47
29	Influence of gold particle size in Au/C catalysts for base-free oxidation of glucose. Catalysis Today, 2018, 306, 183-190.	4.4	46
30	Au/Al2O3 – Efficient catalyst for 5-hydroxymethylfurfural oxidation to 2,5-furandicarboxylic acid. Catalysis Today, 2019, 333, 169-175.	4.4	41
31	Binderless HZSM-5 coating on \hat{l}^2 -SiC for different alcohols dehydration. Applied Catalysis A: General, 2009, 359, 151-157.	4.3	40
32	1D SiC decoration of SiC macroscopic shapes for filtration devices. Journal of Materials Chemistry, 2008, 18, 4654.	6.7	39
33	Steam reforming of methanol over supported Ni and Ni–Sn nanoparticles. International Journal of Hydrogen Energy, 2013, 38, 6646-6656.	7.1	39
34	Effect of Gold Particles Size over Au/C Catalyst Selectivity in HMF Oxidation Reaction. ChemCatChem, 2020, 12, 1177-1183.	3.7	39
35	Impact of Ce–Fe synergism on the catalytic behaviour of Au/CeO ₂ 6FeO _x 7Au/CeO ₂ 6FeO _x 6FeO _x 9FeO ₂ 9FeO ₃ 9FeO _{9FeO<su< td=""><td>4.1</td><td>38</td></su<>}}}	4.1	38
36	Pressure drop measurements and hydrodynamic model description of SiC foam composites decorated with SiC nanofiber. Catalysis Today, 2009, 141, 403-408.	4.4	35

#	Article	IF	Citations
37	Structure-sensitivity of formic acid dehydrogenation reaction over additive-free Pd NPs supported on activated carbon. Chemical Engineering Journal, 2021, 420, 127641.	12.7	35
38	Crotonaldehyde hydrogenation on supported gold catalysts. Catalysis Today, 2008, 133-135, 661-666.	4.4	34
39	Multiple Zeolite Structures from One Ionic Liquid Template. Chemistry - A European Journal, 2013, 19, 2122-2130.	3.3	34
40	O2-assisted Water Gas Shift reaction over structured Au and Pt catalysts. Applied Catalysis B: Environmental, 2016, 185, 337-343.	20.2	34
41	New concept for old reaction: Novel WGS catalyst design. Applied Catalysis B: Environmental, 2018, 238, 1-5.	20.2	34
42	Oxodiperoxomolybdenum complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to sulfoxides using hydrogen peroxide. Catalysis Today, 2015, 255, 102-108.	4.4	33
43	Recycling of construction and demolition waste generated by building infrastructure for the production of glassy materials. Ceramics International, 2016, 42, 15217-15223.	4.8	33
44	In situ characterization of iron-promoted ceria–alumina gold catalysts during the water-gas shift reaction. Catalysis Today, 2013, 205, 41-48.	4.4	32
45	Structuring Pt/CeO2/Al2O3 WGS catalyst: Introduction of buffer layer. Applied Catalysis B: Environmental, 2017, 200, 420-427.	20.2	31
46	Gold catalyst recycling study in base-free glucose oxidation reaction. Catalysis Today, 2018, 301, 72-77.	4.4	31
47	Au and Pt Remain Unoxidized on a CeO ₂ -Based Catalyst during the Water–Gas Shift Reaction. Journal of the American Chemical Society, 2022, 144, 446-453.	13.7	31
48	Deep insight into Zr/Fe combination for successful Pt/CeO ₂ /Al ₂ O ₃ WGS catalyst doping. Catalysis Science and Technology, 2017, 7, 1556-1564.	4.1	30
49	Carbon Supported Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol. Frontiers in Chemistry, 2019, 7, 548.	3.6	30
50	Au/TiO2 supported on ferritic stainless steel monoliths as CO oxidation catalysts. Applied Surface Science, 2013, 270, 169-177.	6.1	29
51	Could an efficient WGS catalyst be useful in the CO-PrOx reaction?. Applied Catalysis B: Environmental, 2014, 150-151, 554-563.	20.2	28
52	Catalytic screening of Au/CeO 2 -MO x /Al 2 O 3 catalysts (MÂ=ÂLa, Ni, Cu, Fe, Cr, Y) in the CO-PrOx reaction. International Journal of Hydrogen Energy, 2015, 40, 1782-1788.	7.1	28
53	Influence of Vanadium or Cobalt Oxides on the CO Oxidation Behavior of Au/MO _{<i>x</i>} /CeO ₂ –Al ₂ O ₃ Systems. ChemCatChem, 2012, 4, 512-520.	3.7	26
54	Bimetallic Ni–Ru and Ni–Re Catalysts for Dry Reforming of Methane: Understanding the Synergies of the Selected Promoters. Frontiers in Chemistry, 2021, 9, 694976.	3.6	26

#	Article	IF	CITATIONS
55	Effect of gold on a NiLaO3 perovskite catalyst for methane steam reforming. Applied Catalysis B: Environmental, 2014, 144, 846-854.	20.2	25
56	Application of alumina supported gold-based catalysts in total oxidation of CO and light hydrocarbons mixture. Catalysis Today, 2006, 113, 182-186.	4.4	23
57	Ni-CeO2/C Catalysts with Enhanced OSC for the WGS Reaction. Catalysts, 2015, 5, 298-309.	3.5	23
58	Synthesis and application of layered titanates in the photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 2015, 163, 23-29.	20.2	23
59	Sub-ambient CO oxidation over Au/MOx/CeO2-Al2O3 (M=Zn or Fe). Applied Catalysis A: General, 2012, 419-420, 58-66.	4.3	22
60	Ionic liquid templated TiO2 nanoparticles as a support in gold environmental catalysis. Applied Catalysis B: Environmental, 2009, 93, 140-148.	20.2	21
61	Low-temperature CO oxidation on multicomponent gold based catalysts. Frontiers in Chemistry, 2013, 1, 12.	3.6	21
62	Viability of Au/CeO ₂ –ZnO/Al ₂ O ₃ Catalysts for Pure Hydrogen Production by the Water–Gas Shift Reaction. ChemCatChem, 2014, 6, 1401-1409.	3.7	21
63	H2 oxidation as criterion for PrOx catalyst selection: Examples based on Au–CoO -supported systems. Journal of Catalysis, 2015, 326, 161-171.	6.2	21
64	Recent Advances in the Brønsted/Lewis Acid Catalyzed Conversion of Glucose to HMF and Lactic Acid: Pathways toward Bio-Based Plastics. Catalysts, 2021, 11, 1395.	3.5	21
65	Hybrid Organic-Inorganic Materials Based on Polyoxometalates and Ionic Liquids and Their Application in Catalysis. ISRN Chemical Engineering, 2014, 2014, 1-13.	1.2	20
66	Tailoring structured WGS catalysts: Impact of multilayered concept on the water surface interactions. Applied Catalysis B: Environmental, 2018, 222, 124-132.	20.2	20
67	Gold supported on pillared clays for CO oxidation reaction: Effect of the clay aggregate size. Applied Clay Science, 2012, 69, 22-29.	5.2	16
68	Ionic liquid protected heteropoly acids for methanol dehydration. Catalysis Today, 2011, 171, 236-241.	4.4	15
69	Multicomponent Au/Cu-ZnO-Al2O3 catalysts: Robust materials for clean hydrogen production. Applied Catalysis A: General, 2018, 558, 91-98.	4.3	15
70	Recent advances in selective oxidation of biomass-derived platform chemicals over gold catalysts. Current Opinion in Green and Sustainable Chemistry, 2020, 21, 50-55.	5.9	14
71	Microwave heating effects on acylation of anisole, catalyzed by BEA zeolite supported on \hat{I}^2 -SiC. Catalysis Communications, 2009, 10, 477-480.	3.3	13
72	Nanogold mesoporous iron promoted ceria catalysts for total and preferential CO oxidation reactions. Journal of Molecular Catalysis A, 2016, 414, 62-71.	4.8	13

#	Article	IF	CITATIONS
73	Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials, 2019, 9, 517.	4.1	13
74	Fructose dehydration reaction over functionalized nanographitic catalysts in MIBK/H2O biphasic system. Catalysis Today, 2021, 366, 68-76.	4.4	13
75	Influence of Gold on Ce-Zr-Co Fluorite-Type Mixed Oxide Catalysts for Ethanol Steam Reforming. Catalysts, 2012, 2, 121-138.	3.5	12
76	Ionic liquid immobilization on carbon nanofibers and zeolites: Catalyst design for the liquid-phase toluene chlorination. Comptes Rendus Chimie, 2015, 18, 324-329.	0.5	12
77	Effect of the sulphonating agent on the catalytic behavior of activated carbons in the dehydration reaction of fructose in DMSO. Applied Catalysis A: General, 2021, 617, 118108.	4.3	11
78	Epimerization of glucose over ionic liquid/phosphomolybdate hybrids: structure–activity relationship. Green Chemistry, 2018, 20, 1042-1049.	9.0	10
79	Montmorillonite-stabilized gold nanoparticles for nitrophenol reduction. Comptes Rendus Chimie, 2019, 22, 621-627.	0.5	10
80	Pursuing efficient systems for glucose transformation to levulinic acid: Homogeneous vs. heterogeneous catalysts and the effect of their co-action. Fuel, 2022, 318, 123712.	6.4	10
81	New class of acid catalysts for methanol dehydration. Studies in Surface Science and Catalysis, 2010, , 601-604.	1.5	9
82	Immobilization of Stabilized Gold Nanoparticles on Various Ceria-Based Oxides: Influence of the Protecting Agent on the Glucose Oxidation Reaction. Catalysts, 2019, 9, 125.	3.5	9
83	Heterogeneous selective oxidation of fatty alcohols: Oxidation of 1-tetradecanol as a model substrate. Catalysis Today, 2014, 238, 49-53.	4.4	8
84	5-Hydroxymethyl-2-Furfural Oxidation Over Au/CexZr1-xO2 Catalysts. Frontiers in Chemistry, 2020, 8, 461.	3.6	8
85	Influence of the ionic liquid presence on the selective oxidation of glucose over molybdenum based catalysts. Catalysis Today, 2016, 278, 82-90.	4.4	7
86	Microprocess Technology for Hydrogen Purification., 2013,, 225-243.		6
87	Au/CeO2-ZnO/Al2O3 as Versatile Catalysts for Oxidation Reactions: Application in Gas/Liquid Environmental Processes. Frontiers in Chemistry, 2019, 7, 504.	3.6	6
88	The Success Story of Gold-Based Catalysts for Gas- and Liquid-Phase Reactions: A Brief Perspective and Beyond. Frontiers in Chemistry, 2019, 7, 691.	3.6	6
89	Gold Functionalized Supported Ionic Liquids Catalyst for CO Oxidation. Catalysts, 2011, 1, 52-68.	3.5	5
90	Structured Catalysts for Volatile Organic Compound Removal. , 2013, , 233-256.		4

#	Article	IF	Citations
91	Understanding the Role of the Cosolvent in the Zeolite Template Function of Imidazolium-Based Ionic Liquid. Journal of Physical Chemistry B, 2014, 118, 3650-3660.	2.6	4
92	Monolithic stirrer reactor: The selective lactose oxidation in liquid phase over Au/Al2O3 nanostructured catalysts. Molecular Catalysis, 2020, 481, 110219.	2.0	4
93	Zr and Fe on Pt/ <scp> CeO ₂ â€MO _x </scp> / <scp> Al ₂ O ₃ </scp> catalysts for <scp>WGS</scp> reaction. International Journal of Energy Research, 2021, 45, 13978-13989.	4.5	4
94	Time-resolved operando DRIFTS-MS study of the moisture tolerance of small-pore SAPO-34 molecular sieves during CH4/CO2 separation. Microporous and Mesoporous Materials, 2020, 298, 110071.	4.4	3
95	Mesoporous Carbon Production by Nanocasting Technique Using Boehmite as a Template. Catalysts, 2021, 11, 1132.	3.5	3
96	Synthesis of ionic liquid templated zeolite like structures. Studies in Surface Science and Catalysis, 2010, 175, 597-600.	1.5	2
97	In Situ DRIFTS-MS Methanol Adsorption Study onto Supported NiSn Nanoparticles: Mechanistic Implications in Methanol Steam Reforming. Nanomaterials, 2021, 11, 3234.	4.1	2
98	Design of microporous materials: A novel generation of solid acids. Comptes Rendus Chimie, 2009, 12, 716-722.	0.5	1
99	Selectivity control in oxidation of 1-tetradecanol on supported nano Au catalysts. Catalysis Today, 2016, 278, 113-119.	4.4	1
100	2. Synthesis and Identification Methods for Zeolites and MOFs. , 2018, , 25-52.		1
101	How a small modification in the imidazolium-based SDA can determine the zeolite structure? MFI vs. TON. Microporous and Mesoporous Materials, 2021, 322, 111160.	4.4	1
102	Editorial: Women in Science: Chemistry. Frontiers in Chemistry, 2021, 9, 772775.	3.6	1
103	Influence of the Lanthanide Oxides on the Catalytic Behavior of Au/Al ₂ O ₃ Catalysts for Total and Preferential CO Oxidation. Advanced Chemistry Letters, 2013, 1, 237-246.	0.1	1
104	ZSM-5 Nanowires Assembly Supported on Medium Surface Area Foam $\langle 1\rangle \hat{1}^2\langle 1\rangle$ -SiC Composite with Nanoscopic Surface Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 3611-3616.	0.9	0
105	Editorial: Special Issue Catalysis by Precious Metals, Past and Future. Catalysts, 2020, 10, 247.	3.5	0
106	Editorial: Catalysis by Gold for Gas & Liquid Phase Reactions: A Golden Future for Environmental Catalysis. Frontiers in Chemistry, 2020, 7, 891.	3. 6	0
107	Catalytic Technologies for Clean Hydrogen Production. RSC Energy and Environment Series, 2020, , 116-149.	0.5	0
108	Editorial: Catalysis in Iberoamerica: Recent Trends. Frontiers in Chemistry, 2022, 10, 870084.	3.6	0