Joao Rodrigues

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360867/publications.pdf Version: 2024-02-01

IOVO BODDICHES

#	Article	IF	CITATIONS
1	A smartphone-adaptable fluorescent sensing tag for non-contact and visual monitoring of the freshness of fish. Analyst, The, 2022, 147, 923-931.	3.5	21
2	Dendrimer nanoplatforms for veterinary medicine applications: A concise overview. Drug Discovery Today, 2022, 27, 1251-1260.	6.4	7
3	Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 2022, 14, 2534-2571.	5.6	149
4	Carbosilane Glycodendrimers for Anticancer Drug Delivery: Synthetic Route, Characterization, and Biological Effect of Glycodendrimer–Doxorubicin Complexes. Biomacromolecules, 2022, 23, 276-290.	5.4	6
5	Polyester Dendrimers Based on Bis-MPA for Doxorubicin Delivery. Biomacromolecules, 2022, 23, 20-33.	5.4	5
6	Dendrimer-Based Nanogels for Cancer Nanomedicine Applications. Bioconjugate Chemistry, 2022, 33, 87-96.	3.6	13
7	Development and challenges of cells- and materials-based tooth regeneration. Engineered Regeneration, 2022, 3, 163-181.	6.0	17
8	Medical applications of biopolymer nanofibers. Biomaterials Science, 2022, 10, 4107-4118.	5.4	16
9	A dual-analytes responsive fluorescent probe for discriminative detection of ClOâ^' and N2H4 in living cells. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 246, 118953.	3.9	13
10	Detection of Ru potential metallodrug in human urine by MALDI-TOF mass spectrometry: Validation and options to enhance the sensitivity. Talanta, 2021, 222, 121551.	5.5	9
11	Short X···N Halogen Bonds With Hexamethylenetetraamine as the Acceptor. Frontiers in Chemistry, 2021, 9, 623595.	3.6	7
12	Engineered non-invasive functionalized dendrimer/dendron-entrapped/complexed gold nanoparticles as a novel class of theranostic (radio)pharmaceuticals in cancer therapy. Journal of Controlled Release, 2021, 332, 346-366.	9.9	29
13	Use of Half-Generation PAMAM Dendrimers (G0.5–G3.5) with Carboxylate End-Groups to Improve the DACHPtCl2 and 5-FU Efficacy as Anticancer Drugs. Molecules, 2021, 26, 2924.	3.8	13
14	Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111637.	5.0	41
15	Engineered Fluorescent Carbon Dots and G4-G6 PAMAM Dendrimer Nanohybrids for Bioimaging and Gene Delivery. Biomacromolecules, 2021, 22, 2436-2450.	5.4	25
16	Cytocompatible cellulose nanofibers from invasive plant species Agave americana L. and Ricinus communis L.: a renewable green source of highly crystalline nanocellulose. Journal of Zhejiang University: Science B, 2021, 22, 450-461.	2.8	7
17	Chemically heterogeneous carbon dots enhanced cholesterol detection by MALDI TOF mass spectrometry. Journal of Colloid and Interface Science, 2021, 591, 373-383.	9.4	18
18	First-in-class and best-in-class dendrimer nanoplatforms from concept to clinic: Lessons learned moving forward. European Journal of Medicinal Chemistry, 2021, 219, 113456.	5.5	22

#	Article	IF	CITATIONS
19	Coumarin-based Fluorescent Probes for Bioimaging: Recent Applications and Developments. Current Organic Chemistry, 2021, 25, 2142-2154.	1.6	9
20	Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioactive Materials, 2021, 6, 3358-3382.	15.6	74
21	A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 2020, 317, 347-374.	9.9	53
22	Glycodendron/pyropheophorbide-a (Ppa)-functionalized hyaluronic acid as a nanosystem for tumor photodynamic therapy. Carbohydrate Polymers, 2020, 247, 116749.	10.2	58
23	Dendrimers toward Translational Nanotherapeutics: Concise Key Step Analysis. Bioconjugate Chemistry, 2020, 31, 2060-2071.	3.6	38
24	New insights into the blue intrinsic fluorescence of oxidized PAMAM dendrimers considering their use as bionanomaterials. Journal of Materials Chemistry B, 2020, 8, 10314-10326.	5.8	16
25	A Review on Thermoplastic or Thermosetting Polymeric Matrices Used in Polymeric Composites Manufactured with Banana Fibers from the Pseudostem. Applied Sciences (Switzerland), 2020, 10, 3023.	2.5	4
26	Superstructured poly(amidoamine) dendrimer-based nanoconstructs as platforms for cancer nanomedicine: A concise review. Coordination Chemistry Reviews, 2020, 421, 213463.	18.8	57
27	Polyethylenimine Nanogels Incorporated with Ultrasmall Iron Oxide Nanoparticles and Doxorubicin for MR Imaging-Guided Chemotherapy of Tumors. Bioconjugate Chemistry, 2020, 31, 907-915.	3.6	38
28	Chemical Sensors towards Environmental Toxic Molecule Monitoring: Fluores-cent Probes for Detection of Thiophenol. General Chemistry, 2020, 6, 190027-190027.	0.6	0
29	A selective cascade reaction-based probe for colorimetric and ratiometric fluorescence detection of benzoyl peroxide in food and living cells. Journal of Materials Chemistry B, 2019, 7, 5775-5781.	5.8	26
30	Zwitterion-functionalized dendrimer-entrapped gold nanoparticles for serum-enhanced gene delivery to inhibit cancer cell metastasis. Acta Biomaterialia, 2019, 99, 320-329.	8.3	71
31	Exploration of biomedical dendrimer space based on in-vitro physicochemical parameters: key factor analysis (Part 1). Drug Discovery Today, 2019, 24, 1176-1183.	6.4	32
32	Exploration of biomedical dendrimer space based on in-vivo physicochemical parameters: Key factor analysis (Part 2). Drug Discovery Today, 2019, 24, 1184-1192.	6.4	29
33	New anionic poly(alkylideneamine) dendrimers as microbicide agents against HIV-1 infection. Nanoscale, 2019, 11, 9679-9690.	5.6	33
34	A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells. Talanta, 2019, 201, 111-118.	5.5	27
35	In silico search, chemical characterization and immunogenic evaluation of amino-terminated G4-PAMAM-HIV peptide complexes using three-dimensional models of the HIV-1 gp120 protein. Colloids and Surfaces B: Biointerfaces, 2019, 177, 77-93.	5.0	23
36	Recent therapeutic applications of the theranostic principle with dendrimers in oncology. Science China Materials, 2018, 61, 1367-1386.	6.3	26

#	Article	IF	CITATIONS
37	Present drug-likeness filters in medicinal chemistry during the hit and lead optimization process: how far can they be simplified?. Drug Discovery Today, 2018, 23, 605-615.	6.4	77
38	Mechanical Properties of Alumina Nanofilled Polymeric Composites Cured with DDSA and MNA. Fibers and Polymers, 2018, 19, 460-470.	2.1	3
39	Laponite®: A key nanoplatform for biomedical applications?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2407-2420.	3.3	210
40	Dendrimers in combination with natural products and analogues as anti-cancer agents. Chemical Society Reviews, 2018, 47, 514-532.	38.1	156
41	Bench-to-bedside translation of dendrimers: Reality or utopia? A concise analysis. Advanced Drug Delivery Reviews, 2018, 136-137, 73-81.	13.7	47
42	PAMAM dendrimers: blood-brain barrier transport and neuronal uptake after focal brain ischemia. Journal of Controlled Release, 2018, 291, 65-79.	9.9	65
43	Multifunctional Dendrimer-Entrapped Gold Nanoparticles Conjugated with Doxorubicin for pH-Responsive Drug Delivery and Targeted Computed Tomography Imaging. Langmuir, 2018, 34, 12428-12435.	3.5	79
44	Poly(alkylidenimine) Dendrimers Functionalized with the Organometallic Moiety [Ru(η5-C5H5)(PPh3)2]+ as Promising Drugs Against Cisplatin-Resistant Cancer Cells and Human Mesenchymal Stem Cells. Molecules, 2018, 23, 1471.	3.8	32
45	The influence of curing agents in the impact properties of epoxy resin nanocomposites. Composite Structures, 2017, 174, 26-32.	5.8	19
46	Binding free energy calculations using MMPB/GBSA approaches for PAMAM-G4-drug complexes at neutral, basic and acid pH conditions. Journal of Molecular Graphics and Modelling, 2017, 76, 330-341.	2.4	16
47	Laponite-based nanohybrids for enhanced solubility of dexamethasone and osteogenic differentiation of human mesenchymal stem cells. Journal of Controlled Release, 2017, 259, e121-e122.	9.9	1
48	Principal Physicochemical Methods Used to Characterize Dendrimer Molecule Complexes Used as Genetic Therapy Agents, Nanovaccines or Drug Carriers. Current Pharmaceutical Design, 2017, 23, 3076-3083.	1.9	3
49	Electrodeposition of polyaniline on self-assembled monolayers on graphite for the voltammetric detection of iron(II). Materials Chemistry and Physics, 2016, 184, 261-268.	4.0	11
50	Design, synthesis and biological evaluation of Arylpiperazine-based novel Phthalimides: Active inducers of testicular germ cell apoptosis. Journal of Chemical Sciences, 2016, 128, 1245-1263.	1.5	5
51	Gene delivery using dendrimer/pDNA complexes immobilized in electrospun fibers using the Layer-by-Layer technique. RSC Advances, 2016, 6, 97116-97128.	3.6	17
52	Compound high-quality criteria: a new vision to guide the development of drugs, current situation. Drug Discovery Today, 2016, 21, 573-584.	6.4	32
53	Fine tuning of the pH-sensitivity of laponite–doxorubicin nanohybrids by polyelectrolyte multilayer coating. Materials Science and Engineering C, 2016, 60, 348-356.	7.3	42
54	Why and how have drug discovery strategies in pharma changed? What are the new mindsets?. Drug Discovery Today, 2016, 21, 239-249.	6.4	62

#	Article	IF	CITATIONS
55	Effect of irregular shaped nanoalumina on the enhancement of mechanical properties of epoxy resin nanocomposites using DDM as hardener. Composites Part B: Engineering, 2016, 84, 17-24.	12.0	22
56	PAMAM Dendrimer/pDNA Functionalized-Magnetic Iron Oxide Nanoparticles for Gene Delivery. Journal of Biomedical Nanotechnology, 2015, 11, 1370-1384.	1.1	45
57	Editorial (Thematic Issue: Self-Assembled Organic Nanostructures in Medicinal Chemistry: Advances) Tj ETQq1 1	0.784314 2.1	rgBT /Overio
58	Synthesis, characterization and solid-state photoluminescence studies of six alkoxy phenylene ethynylene dinuclear palladium(<scp>ii</scp>) rods. Dalton Transactions, 2015, 44, 4003-4015.	3.3	5
59	Thermo/redox/pH-triple sensitive poly(N-isopropylacrylamide-co-acrylic acid) nanogels for anticancer drug delivery. Journal of Materials Chemistry B, 2015, 3, 4221-4230.	5.8	119
60	Octadecyl functionalized core–shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. Journal of Chromatography A, 2015, 1393, 18-25.	3.7	23
61	Biodegradable Polymer Nanogels for Drug/Nucleic Acid Delivery. Chemical Reviews, 2015, 115, 8564-8608.	47.7	401
62	RGD peptide-modified multifunctional dendrimer platform for drug encapsulation and targeted inhibition of cancer cells. Colloids and Surfaces B: Biointerfaces, 2015, 125, 82-89.	5.0	96
63	Self-Assembled Peptide Nanoarchitectures: Applications and Future Aspects. Current Topics in Medicinal Chemistry, 2015, 15, 1268-1289.	2.1	16
64	Antitumor Efficacy of Doxorubicin-Loaded Laponite/Alginate Hybrid Hydrogels. Macromolecular Bioscience, 2014, 14, 110-120.	4.1	48
65	Dendrimer-Assisted Formation of Fluorescent Nanogels for Drug Delivery and Intracellular Imaging. Biomacromolecules, 2014, 15, 492-499.	5.4	76
66	An exploratory study to evaluate the potential of nanohydroxyapatite as a powerful sorbent for efficient extraction of volatile organic metabolites, potential biomarkers of cancer. Analytical Methods, 2014, 6, 6051.	2.7	3
67	Amphiphilic Polymer-Mediated Formation of Laponite-Based Nanohybrids with Robust Stability and pH Sensitivity for Anticancer Drug Delivery. ACS Applied Materials & Interfaces, 2014, 6, 16687-16695.	8.0	87
68	pH-sensitive Laponite®/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomaterialia, 2014, 10, 300-307.	8.3	91
69	Redox-Responsive Alginate Nanogels with Enhanced Anticancer Cytotoxicity. Biomacromolecules, 2013, 14, 3140-3146.	5.4	153
70	A convenient route for the preparation of the monohydride catalyst trans-[RuCl(H)(dppe)2] (dppe=Ph2PCH2CH2PPh2): Improved synthesis and crystal structure. Inorganic Chemistry Communication, 2013, 29, 123-127.	3.9	3
71	Divergent Route to the Preparation of Hybrid Pt–Fe 2,4,6-Tris(4-ethynyl)phenyl-1,3,5-triazine Metallodendrimers for Nonlinear Optics. Organometallics, 2013, 32, 406-414.	2.3	25
72	cis,cis,cis-(Acetato-κ2O,O′)bis[1,2-bis(diphenylphosphanyl)ethane-κ2P,P′]ruthenium(II) 0.75-trifluoromethanesulfonate 0.25-chloride. Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m226-m226.	0.2	0

#	Article	IF	CITATIONS
73	Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chemical Society Reviews, 2012, 41, 2193-2221.	38.1	1,190
74	Insight into the role of N,N-dimethylaminoethyl methacrylate (DMAEMA) conjugation onto poly(ethylenimine): cell viability and gene transfection studies. Journal of Materials Science: Materials in Medicine, 2012, 23, 2967-2980.	3.6	21
75	Gene delivery using biodegradable polyelectrolyte microcapsules prepared through the layerâ€byâ€layer technique. Biotechnology Progress, 2012, 28, 1088-1094.	2.6	23
76	Calcium phosphate-mediated gene delivery using simulated body fluid (SBF). International Journal of Pharmaceutics, 2012, 434, 199-208.	5.2	36
77	The Effect of PAMAM Dendrimers on Mesenchymal Stem Cell Viability and Differentiation. Current Medicinal Chemistry, 2012, 19, 4969-4975.	2.4	12
78	How Do Nitriles Compare with Isoelectronic Alkynyl Groups in the Electronic Communication between Iron Centers Bridged by Phenylenebis- and -tris(nitrile) Ligands? An Electronic and Crystal-Structure Study. Inorganic Chemistry, 2011, 50, 114-124.	4.0	18
79	Gene Delivery into Mesenchymal Stem Cells: A Biomimetic Approach Using RGD Nanoclusters Based on Poly(amidoamine) Dendrimers. Biomacromolecules, 2011, 12, 472-481.	5.4	80
80	Poly(alkylidenamines) dendrimers as scaffolds for the preparation of low-generation ruthenium based metallodendrimers. New Journal of Chemistry, 2011, 35, 1938.	2.8	21
81	pH sensitive Laponite/alginate hybrid hydrogels: swelling behaviour and release mechanism. Soft Matter, 2011, 7, 6231.	2.7	74
82	Injectable hybrid laponite/alginate hydrogels for sustained release of methylene blue. Journal of Controlled Release, 2011, 152, e55-e57.	9.9	8
83	Non-Viral Gene Delivery to Mesenchymal Stem Cells: Methods, Strategies and Application in Bone Tissue Engineering and Regeneration. Current Gene Therapy, 2011, 11, 46-57.	2.0	132
84	Functionalization of poly(amidoamine) dendrimers with hydrophobic chains for improved gene delivery in mesenchymal stem cells. Journal of Controlled Release, 2010, 144, 55-64.	9.9	176
85	Preparation and Characterization of Novel Poly(alkylidenamine) Nitrile Ruthenium Metallodendrimers. European Journal of Inorganic Chemistry, 2010, 2010, 1729-1735.	2.0	13
86	Receptor-Mediated Gene Delivery Using PAMAM Dendrimers Conjugated with Peptides Recognized by Mesenchymal Stem Cells. Molecular Pharmaceutics, 2010, 7, 763-774.	4.6	100
87	Three 2,5-dialkoxy-1,4-diethynylbenzene derivatives. Acta Crystallographica Section C: Crystal Structure Communications, 2008, 64, o33-o36.	0.4	1
88	Visible-Light Photolytic Synthesis of Multinuclear and Dendritic Iron-Nitrile Cationic Complexes. Inorganic Chemistry, 2008, 47, 4421-4428.	4.0	14
89	4,4′-[Thiophene-2,5-diylbis(ethyne-2,1-diyl)]dibenzonitrile. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o765-o766.	0.2	0
90	A Trinuclear Aqua Cyano-Bridged Ruthenium Complex [{(η5-C5H5)(PPh3)2Ru(μ-CN)}2RuCl2(PPh3)(H2O)]PF6: Synthesis, Characterization and Crystal Structure. European Journal of Inorganic Chemistry, 2007, 2007, 1920-1924.	2.0	7

#	Article	IF	CITATIONS
91	Syntheses and characterization of novel ruthenium complexes based on 1,3-dicyanobenzene. Journal of Organometallic Chemistry, 2007, 692, 5263-5271.	1.8	4
92	From Simple Monopyridine Clusters [Mo6Br13(Py-R)][n-Bu4N] and Hexapyridine Clusters [Mo6X8(Py-R)6][OSO2CF3]4(X = Br or I) to Cluster-Cored Organometallic Stars, Dendrons, and Dendrimers. Inorganic Chemistry, 2006, 45, 1156-1167.	4.0	56
93	cis-Aquabis[bis(diphenylphosphino)ethane-κ2 P,Pâ€2]chlororuthenium(II) hexafluorophosphate dichloromethane sesquisolvate hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m699-m701.	0.2	2
94	cis-[Bis(diphenylphosphino)ethane-κ2 P,Pâ€2]dichlororuthenium(II) dichloromethane disolvate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m1154-m1155.	0.2	2
95	cis-Diazido[bis(diphenylphosphino)methane-κ2P,Pâ€2]ruthenium(II) dichloromethane 0.42-solvate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m2052-m2053.	0.2	0
96	trans-Bis[bis(diphenylphosphino)methane-κ2P,P′]dichlororuthenium(II) dichloromethane disolvate acetone hemisolvate hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m3594-m3596.	0.2	2
97	Ruthenium Metallodendrimers Based on Nitrile-Functionalized Poly(alkylidene imine)s. European Journal of Inorganic Chemistry, 2006, 2006, 47-50.	2.0	10
98	Synthesis, characterization and crystal structure of the bimetallic cyano-bridged [(η5-C5H5)(PPh3)2Ru(μ-CN)Ru(PPh3)2(η5-C5H5)][PF6]. Inorganica Chimica Acta, 2005, 358, 2482-2488.	2.4	18
99	Mo6Br8-Cluster-cored organometallic stars and dendrimers. Comptes Rendus Chimie, 2005, 8, 1789-1797.	0.5	31
100	Organometallic Syntheses of Hexa- and Nonanitrile Ligands and Their Ruthenium Complexes. Organometallics, 2004, 23, 4271-4276.	2.3	11
101	Molecular structure and crystal packing of CpMRisonitriles (M= Ru, Fe;R= phosphines and TMEDA). How to obtain new solids for NLO. Acta Crystallographica Section A: Foundations and Advances, 2004, 60, s302-s302.	0.3	0
102	Second harmonic generation of η5-monocyclopentadienyl ruthenium p-benzonitrile derivatives by Kurtz powder technique. Crystal and molecular structure determinations of [Ru(η5-C5H5)((+)-DIOP)(p-NCC6H4NO2)][X], X=PF6â'', CF3SO3â'' and [Ru(η5-C5H5)((+)-DIOP)(NCCH3)][PF6]. Journal of Organometallic Chemistry, 2001, 632, 133-144.	1.8	28
103	Hyper-Rayleigh scattering study of η5-monocyclopentadienyl–metal complexes for second order non-linear optical materials. Journal of Materials Chemistry, 1998, 8, 925-930.	6.7	56
104	Third-harmonic generation in organometallic ruthenium(II) derivatives containing coordinated p-substituted benzonitriles. Journal of Materials Chemistry, 1995, 5, 1861-1865.	6.7	20
105	Synthesis and characterization of η5-monocyclopentadienyl (p-nitrobenzonitrile)ruthenium(II) salts: Second harmonic generation powder efficiencies. Journal of Organometallic Chemistry, 1994, 475, 241-245	1.8	38