Jinlei Bian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360828/publications.pdf

Version: 2024-02-01

361296 434063 1,117 49 20 31 h-index citations g-index papers 49 49 49 1495 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Small-molecule degraders of cyclin-dependent kinase protein: a review. Future Medicinal Chemistry, 2022, 14, 167-185.	1.1	5
2	Overview of the development of selective androgen receptor modulators (SARMs) as pharmacological treatment for osteoporosis (1998–2021). European Journal of Medicinal Chemistry, 2022, 230, 114119.	2.6	9
3	Novel biphenyl-based scaffold as potent and selective histone deacetylase 6 (HDAC6) inhibitors: Identification, development and pharmacological evaluation. European Journal of Medicinal Chemistry, 2022, 233, 114228.	2.6	2
4	Discovery of novel glutaminase 1 allosteric inhibitor with 4-piperidinamine linker and aromatic heterocycles. European Journal of Medicinal Chemistry, 2022, 236, 114337.	2.6	4
5	Discovery of Potent Small-Molecule USP8 Inhibitors for the Treatment of Breast Cancer through Regulating ERα Expression. Journal of Medicinal Chemistry, 2022, 65, 8914-8932.	2.9	7
6	A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorganic and Medicinal Chemistry, 2022, 70, 116921.	1.4	7
7	Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. European Journal of Medicinal Chemistry, 2021, 211, 113091.	2.6	46
8	Structure-Enabled Discovery of Novel Macrocyclic Inhibitors Targeting Glutaminase 1 Allosteric Binding Site. Journal of Medicinal Chemistry, 2021, 64, 4588-4611.	2.9	22
9	Identification of novel androgen receptor degrading agents to treat advanced prostate cancer. European Journal of Medicinal Chemistry, 2021, 217, 113376.	2.6	5
10	Discovery of imidazopyrrolopyridines derivatives as novel and selective inhibitors of JAK2. European Journal of Medicinal Chemistry, 2021, 218, 113394.	2.6	3
11	Copper(II)-Catalyzed Tandem Reaction: Synthesis of Furo[3,2- <i>c</i> jcoumarin Derivatives and Evaluation for Photophysical Properties. Journal of Organic Chemistry, 2021, 86, 12537-12548.	1.7	6
12	Development of Cdc2-like Kinase 2 Inhibitors: Achievements and Future Directions. Journal of Medicinal Chemistry, 2021, 64, 13191-13211.	2.9	10
13	Preparing anti-SARS-CoV-2 agent EIDD-2801 by a practical and scalable approach, and quick evaluation via machine learning. Acta Pharmaceutica Sinica B, 2021, 11, 3678-3682.	5.7	1
14	Design, synthesis and biological evaluation of a novel spiro oxazolidinedione as potent p300/CBP HAT inhibitor for the treatment of ovarian cancer. Bioorganic and Medicinal Chemistry, 2021, 52, 116512.	1.4	9
15	Bioactive modulators targeting STING adaptor in cGAS-STING pathway. Drug Discovery Today, 2020, 25, 230-237.	3.2	40
16	Development of Indoleamine 2,3-Dioxygenase 1 Inhibitors for Cancer Therapy and Beyond: A Recent Perspective. Journal of Medicinal Chemistry, 2020, 63, 15115-15139.	2.9	36
17	Unconventional Passive Enhancement of Transdermal Drug Delivery: toward a Mechanistic Understanding of Penetration Enhancers Releasing from Acrylic Pressure-Sensitive Adhesive of Patches. Pharmaceutical Research, 2020, 37, 169.	1.7	10
18	Recent Developments in the Biology and Medicinal Chemistry of CDK9 Inhibitors: An Update. Journal of Medicinal Chemistry, 2020, 63, 13228-13257.	2.9	54

#	Article	IF	CITATIONS
19	Discovery of novel USP8 inhibitors via Ubiquitin-Rho-110 fluorometric assay based high throughput screening. Bioorganic Chemistry, 2020, 101, 103962.	2.0	6
20	A critical update on the strategies towards modulators targeting androgen receptors. Bioorganic and Medicinal Chemistry, 2020, 28, 115554.	1.4	7
21	Practical and Efficient Approach to the Preparation of Diquafosol Tetrasodium. Organic Process Research and Development, 2020, 24, 1477-1483.	1.3	2
22	Janus kinases (JAKs): The efficient therapeutic targets for autoimmune diseases and myeloproliferative disorders. European Journal of Medicinal Chemistry, 2020, 192, 112155.	2.6	40
23	Microwave-assisted unprotected Sonogashira reaction in water for the synthesis of polysubstituted aromatic acetylene compounds. Green Chemistry, 2020, 22, 1338-1344.	4.6	10
24	Discovery of pyridine tetrahydroisoquinoline thiohydantoin derivatives with low blood-brain barrier penetration as the androgen receptor antagonists. European Journal of Medicinal Chemistry, 2020, 192, 112196.	2.6	7
25	A review on kinases phosphorylating the carboxyl-terminal domain of RNA polymerase Il—Biological functions and inhibitors. Bioorganic Chemistry, 2020, 104, 104318.	2.0	6
26	Overview of the Development of Glutaminase Inhibitors: Achievements and Future Directions. Journal of Medicinal Chemistry, 2019, 62, 1096-1115.	2.9	77
27	Discovery of phosphonamidate IDO1 inhibitors for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry, 2019, 182, 111629.	2.6	27
28	Design, synthesis and evaluation of phthalazinone thiohydantoin-based derivative as potent PARP-1 inhibitors. Bioorganic Chemistry, 2019, 91, 103181.	2.0	19
29	Synthesis and in vivo antitumor evaluation of an orally active potent phosphonamidate derivative targeting IDO1/IDO2/TDO. Biochemical Pharmacology, 2019, 168, 214-223.	2.0	29
30	Development and Characterization of a Fluorescent Probe for GLS1 and the Application for High-Throughput Screening of Allosteric Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 9642-9657.	2.9	19
31	Identification of novel imidazoles as IDO1 inhibitors through microwaveâ€assisted oneâ€pot multicomponent reactions. Archiv Der Pharmazie, 2019, 352, e1900165.	2.1	6
32	A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorganic and Medicinal Chemistry, 2019, 27, 677-685.	1.4	64
33	Discovery of cyanopyridine scaffold as novel indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors through virtual screening and preliminary hit optimisation. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 250-263.	2.5	18
34	Design of wogonin-inspired selective cyclin-dependent kinase 9 (CDK9) inhibitors with potent inÂvitro and inÂvivo antitumor activity. European Journal of Medicinal Chemistry, 2019, 178, 782-801.	2.6	21
35	The progress and development of GLUT1 inhibitors targeting cancer energy metabolism. Future Medicinal Chemistry, 2019, 11, 2333-2352.	1.1	43
36	Recent discovery of phosphoinositide 3-kinase \hat{I}^3 inhibitors for the treatment of immune diseases and cancers. Future Medicinal Chemistry, 2019, 11, 2151-2169.	1.1	13

#	Article	IF	Citations
37	Discovery and development of small molecule modulators targeting glutamine metabolism. European Journal of Medicinal Chemistry, 2019, 163, 215-242.	2.6	31
38	Current knowledge on the nucleotide agonists for the P2Y2 receptor. Bioorganic and Medicinal Chemistry, 2018, 26, 366-375.	1.4	23
39	Exploring the tetrahydroisoquinoline thiohydantoin scaffold blockade the androgen receptor as potent anti-prostate cancer agents. European Journal of Medicinal Chemistry, 2018, 143, 1325-1344.	2.6	23
40	Recent discovery of indoleamine-2,3-dioxygenase 1 inhibitors targeting cancer immunotherapy. European Journal of Medicinal Chemistry, 2018, 143, 656-669.	2.6	47
41	Discovery of Wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorganic Chemistry, 2018, 81, 373-381.	2.0	98
42	Palladium(II)-Catalyzed Reaction of Lawsones and Propargyl Carbonates: Construction of 2,3-Furanonaphthoquinones and Evaluation as Potential Indoleamine 2,3-Dioxygenase Inhibitors. Journal of Organic Chemistry, 2018, 83, 8003-8010.	1.7	14
43	Synthesis, evaluation and quantitative structure–activity relationship (QSAR) analysis of Wogonin derivatives as cytotoxic agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 1012-1016.	1.0	12
44	2-Substituted 3,7,8-trimethylnaphtho[1,2- b] furan-4,5-diones as specific L-shaped NQO1-mediated redox modulators for the treatment of non-small cell lung cancer. European Journal of Medicinal Chemistry, 2017, 138, 616-629.	2.6	22
45	Discovery and synthesis of novel Wogonin derivatives with potent antitumor activity inÂvitro. European Journal of Medicinal Chemistry, 2017, 140, 421-434.	2.6	14
46	Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer. European Journal of Medicinal Chemistry, 2017, 125, 1002-1022.	2.6	42
47	Synthesis and evaluation of $(\hat{A}\pm)$ -dunnione and its ortho-quinone analogues as substrates for NAD(P)H:quinone oxidoreductase 1 (NQO1). Bioorganic and Medicinal Chemistry Letters, 2015, 25, 1244-1248.	1.0	35
48	Palladium(II)-Catalyzed C–H Bond Activation/C–C Coupling/Intramolecular Tsuji–Trost Reaction Cascade: Facile Access to 2 <i>H</i> -Pyranonaphthoquinones. Organic Letters, 2015, 17, 3410-3413.	2.4	20
49	2-Substituted 3-methylnaphtho[1,2-b]furan-4,5-diones as novel L-shaped ortho-quinone substrates for NAD(P)H:quinone oxidoreductase (NQO1). European Journal of Medicinal Chemistry, 2014, 82, 56-67.	2.6	46