
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Semi-Automatic Planning and Three-Dimensional Electrospinning of Patient-Specific Grafts for Fontan Surgery. IEEE Transactions on Biomedical Engineering, 2022, 69, 186-198.	4.2	9
2	Extruded poly (glycerol sebacate) and polyglycolic acid vascular graft forms a neoartery. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 346-354.	2.7	6
3	Novel reinforcement of corrugated nanofiber tissue-engineered vascular graft to prevent aneurysm formation for arteriovenous shunts in an ovine model. JVS Vascular Science, 2022, 3, 182-191.	1.1	4
4	Computational Fontan Analysis: Preserving Accuracy While Expediting Workflow. World Journal for Pediatric & amp; Congenital Heart Surgery, 2022, 13, 293-301.	0.8	4
5	Virtual Reality Cardiac Surgical Planning Software (CorFix) for Designing Patient-Specific Vascular Grafts: Development and Pilot Usability Study. JMIR Cardio, 2022, 6, e35488.	1.7	3
6	Stem Cells and Congenital Heart Disease: The Future Potential Clinical Therapy Beyond Current Treatment. Current Cardiology Reviews, 2022, 18, .	1.5	0
7	Aorta size mismatch predicts decreased exercise capacity in patients with successfully repaired coarctation of the aorta. Journal of Thoracic and Cardiovascular Surgery, 2021, 162, 183-192.e2.	0.8	9
8	Cellâ€Laden Gradient Hydrogel Scaffolds for Neovascularization of Engineered Tissues. Advanced Healthcare Materials, 2021, 10, e2001706.	7.6	9
9	Cardiac Tissue Creation with the Kenzan Method. , 2021, , 109-115.		1
10	Aortic root aneurysm repair in a neonate with Loeys–Dietz syndrome. Cardiology in the Young, 2021, 31, 848-850.	0.8	0
11	Technical Modifications That Might Improve Long-term Outcomes of the Ross Procedure in Children. Annals of Thoracic Surgery, 2021, 112, 1997-2004.	1.3	3
12	Hydrogel Scaffolds: Cell‣aden Gradient Hydrogel Scaffolds for Neovascularization of Engineered Tissues (Adv. Healthcare Mater. 7/2021). Advanced Healthcare Materials, 2021, 10, 2170030.	7.6	1
13	Mechanical stimulation enhances development of scaffoldâ€free, 3Dâ€printed, engineered heart tissue grafts. Journal of Tissue Engineering and Regenerative Medicine, 2021, 15, 503-512.	2.7	14
14	Congenitally Abnormal Aortic Valve Causing Coronary Obstruction and Cardiac Arrest in Infancy. Annals of Thoracic Surgery, 2021, 111, e339-e341.	1.3	0
15	Educational tool reduces parental stress at home post pediatric cardiac surgery: A pilot study. Progress in Pediatric Cardiology, 2021, 61, 101335.	0.4	1
16	Fast-Degrading Tissue-Engineered Vascular Grafts Lead to Increased Extracellular Matrix Cross-Linking Enzyme Expression. Tissue Engineering - Part A, 2021, 27, 1368-1375.	3.1	6
17	Pediatric aortic valve repair: Any development in the material for cusp extension valvuloplasty?. Journal of Cardiac Surgery, 2021, 36, 4054-4060.	0.7	3
18	Altered hemodynamics by 4D flow cardiovascular magnetic resonance predict exercise intolerance in repaired coarctation of the aorta: an in vitro study. Journal of Cardiovascular Magnetic Resonance, 2021, 23, 99.	3.3	6

#	Article	IF	CITATIONS
19	Noncanonical Notch signals have opposing roles during cardiac development. Biochemical and Biophysical Research Communications, 2021, 577, 12-16.	2.1	2
20	Pulmonary hypertension and mitral regurgitation in an infant with an anatomically normal mitral valve. Cardiology in the Young, 2021, 31, 476-478.	0.8	0
21	Outcomes From Three Decades of Infant and Pediatric Heart Transplantation. ASAIO Journal, 2021, 67, 1051-1059.	1.6	8
22	InÂvivo implantation of 3-dimensional printed customized branched tissue engineered vascular graft in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 2020, 159, 1971-1981.e1.	0.8	25
23	Early Vascular Cells Improve Microvascularization Within 3D Cardiac Spheroids. Tissue Engineering - Part C: Methods, 2020, 26, 80-90.	2.1	21
24	3D Bioprinting. , 2020, , 177-194.		1
25	Different degradation rates of nanofiber vascular grafts in small and large animal models. Journal of Tissue Engineering and Regenerative Medicine, 2020, 14, 203-214.	2.7	25
26	Recovery from Total Acute Lung Failure After 20 Months of Extracorporeal Life Support. ASAIO Journal, 2020, 66, e11-e14.	1.6	21
27	Diaphragm Paralysis After Pediatric Cardiac Surgery: An STS Congenital Heart Surgery Database Study. Annals of Thoracic Surgery, 2020, 112, 139-146.	1.3	10
28	Automatic Shape Optimization of Patient-Specific Tissue Engineered Vascular Grafts for Aortic Coarctation. , 2020, 2020, 2319-2323.		9
29	Spontaneous reversal of stenosis in tissue-engineered vascular grafts. Science Translational Medicine, 2020, 12, .	12.4	81
30	In vivo models for biomaterials: applications from cardiovascular tissue engineering. , 2020, , 195-217.		0
31	Corrugated nanofiber tissue-engineered vascular graft to prevent kinking for arteriovenous shunts in an ovine model. JVS Vascular Science, 2020, 1, 100-108.	1.1	8
32	Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study. Journal of Thoracic and Cardiovascular Surgery, 2020, 160, 203-212.e2.	0.8	23
33	A successful heart and liver transplantation requiring intraoperative extracorporeal membrane oxygenation for primary cardiac allograft dysfunction in a patient with Fontan failure. Journal of Cardiac Surgery, 2020, 35, 1357-1359.	0.7	0
34	Assessment of decellularized pericardial extracellular matrix and poly(propylene fumarate) biohybrid for small-diameter vascular graft applications. Acta Biomaterialia, 2020, 110, 68-81.	8.3	25
35	208: USE OF FRESH WHOLE BLOOD FOR NEONATAL CARDIOPULMONARY BYPASS. Critical Care Medicine, 2020, 48, 86-86.	0.9	0
36	Principles of Spheroid Preparation for Creation of 3D Cardiac Tissue Using Biomaterial-Free Bioprinting. Methods in Molecular Biology, 2020, 2140, 183-197.	0.9	3

#	Article	IF	CITATIONS
37	CorFix: Virtual Reality Cardiac Surgical Planning System for Designing Patient Specific Vascular Grafts. , 2020, , .		4
38	HeartWare Ventricular Assist Device Implantation for Pediatric Heart Failure—A Single Center Approach. Artificial Organs, 2019, 43, 21-29.	1.9	8
39	Cardiac regeneration using humanâ€induced pluripotent stem cellâ€derived biomaterialâ€free 3Dâ€bioprinted cardiac patch in vivo. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2031-2039.	2.7	66
40	Direct Ink Writing of Poly(tetrafluoroethylene) (PTFE) with Tunable Mechanical Properties. ACS Applied Materials & Interfaces, 2019, 11, 28289-28295.	8.0	42
41	Repair of anomalous origin of left coronary artery without intramural course using an ultrasonic scalpel. Journal of Cardiac Surgery, 2019, 34, 1380-1382.	0.7	0
42	Dual-Gel 4D Printing of Bioinspired Tubes. ACS Applied Materials & amp; Interfaces, 2019, 11, 8492-8498.	8.0	100
43	Trends and Updates on Cardiopulmonary Bypass Setup in Pediatric Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 2019, 33, 2804-2813.	1.3	8
44	Foetal right atrial aneurysm and aortic coarctation with left ventricular dysfunction. Cardiology in the Young, 2019, 29, 1002-1004.	0.8	2
45	Size Mismatching Increases Mortality After Lung Transplantation in Preadolescent Patients. Annals of Thoracic Surgery, 2019, 108, 130-137.	1.3	7
46	Bioprinting of freestanding vascular grafts and the regulatory considerations for additively manufactured vascular prostheses. Translational Research, 2019, 211, 123-138.	5.0	19
47	Regenerative and durable small-diameter graft as an arterial conduit. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12710-12719.	7.1	52
48	Children's Heart Assessment Tool for Transplantation (CHAT) Score: A Novel Risk Score Predicts Survival After Pediatric Heart Transplantation. World Journal for Pediatric & Congenital Heart Surgery, 2019, 10, 296-303.	0.8	4
49	A Net Mold-Based Method of Biomaterial-Free Three-Dimensional Cardiac Tissue Creation. Tissue Engineering - Part C: Methods, 2019, 25, 243-252.	2.1	17
50	Valve-sparing aortic root replacement in children: Outcomes from 100 consecutive cases. Journal of Thoracic and Cardiovascular Surgery, 2019, 157, 1100-1109.	0.8	23
51	Design and Simulation of Patient-Specific Tissue-Engineered Bifurcated Right Ventricle-Pulmonary Artery Grafts using Computational Fluid Dynamics. , 2019, , .		2
52	Formation of Neoarteries with Optimal Remodeling Using Rapidly Degrading Textile Vascular Grafts. Tissue Engineering - Part A, 2019, 25, 632-641.	3.1	13
53	The Prevalence and Impact of Congenital Diaphragmatic Hernia Among Patients Undergoing Surgery for Congenital Heart Disease. Seminars in Thoracic and Cardiovascular Surgery, 2019, 31, 69-77.	0.6	8
54	Two Cases of Aortic Root Replacement After Fontan Completion. World Journal for Pediatric & Congenital Heart Surgery, 2019, 10, 505-507.	0.8	0

#	Article	IF	CITATIONS
55	Virtual Cardiac Surgical Planning Through Hemodynamics Simulation and Design Optimization of Fontan Grafts. Lecture Notes in Computer Science, 2019, , 200-208.	1.3	5
56	Tricuspid Valve Detachment in Ventricular Septal Defect Closure Does Not Impact Valve Function. Annals of Thoracic Surgery, 2018, 106, 145-150.	1.3	13
57	Oversized Biodegradable Arterial Grafts Promote Enhanced Neointimal Tissue Formation. Tissue Engineering - Part A, 2018, 24, 1251-1261.	3.1	12
58	Coronary Button Pseudoaneurysms After Aortic Root Replacement in a Child With Loeys-Deitz Syndrome. Annals of Thoracic Surgery, 2018, 105, e63-e65.	1.3	5
59	In vivo therapeutic applications of cell spheroids. Biotechnology Advances, 2018, 36, 494-505.	11.7	58
60	Role of virtual reality in congenital heart disease. Congenital Heart Disease, 2018, 13, 357-361.	0.2	67
61	Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics. Journal of Thoracic and Cardiovascular Surgery, 2018, 155, 1734-1742.	0.8	41
62	Role of Bone Marrow Mononuclear Cell Seeding for Nanofiber Vascular Grafts. Tissue Engineering - Part A, 2018, 24, 135-144.	3.1	36
63	Review of Vascular Graft Studies in Large Animal Models. Tissue Engineering - Part B: Reviews, 2018, 24, 133-143.	4.8	60
64	Simplified Mitral Valve Repair in Pediatric Patients With Connective Tissue Disorders. Operative Techniques in Thoracic and Cardiovascular Surgery, 2018, 23, 121-128.	0.3	0
65	3D Printing Technology for Vascularization. Biological and Medical Physics Series, 2018, , 121-139.	0.4	0
66	Mechanical Characterization of hiPSCâ€Đerived Cardiac Tissues for Quality Control. Advanced Biology, 2018, 2, 1800251.	3.0	6
67	A Review of Goal-Directed Cardiopulmonary Bypass Management in Pediatric Cardiac Surgery. World Journal for Pediatric & Congenital Heart Surgery, 2018, 9, 565-572.	0.8	13
68	3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects. BioMed Research International, 2018, 2018, 1-11.	1.9	65
69	Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training. World Journal for Pediatric & Congenital Heart Surgery, 2018, 9, 454-458.	0.8	19
70	Pseudoaneurysm formation after valve sparing root replacement in children with Loeys-Dietz syndrome. Journal of Cardiac Surgery, 2018, 33, 339-343.	0.7	20
71	A Net Mold-based Method of Scaffold-free Three-Dimensional Cardiac Tissue Creation. Journal of Visualized Experiments, 2018, , .	0.3	4
72	3D bioprinting using stem cells. Pediatric Research, 2018, 83, 223-231.	2.3	179

#	Article	IF	CITATIONS
73	Virtual Reality in Neurointervention. Journal of Vascular and Interventional Neurology, 2018, 10, 17-22.	1.1	7
74	Tissue engineered vascular grafts: current state of the field. Expert Review of Medical Devices, 2017, 14, 383-392.	2.8	61
75	Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract. World Journal for Pediatric & Congenital Heart Surgery, 2017, 8, 391-393.	0.8	14
76	Aortic Root Replacement for Children With Loeys-Dietz Syndrome. Annals of Thoracic Surgery, 2017, 103, 1513-1518.	1.3	31
77	Principles of the <i>Kenzan</i> Method for Robotic Cell Spheroid-Based Three-Dimensional Bioprinting . Tissue Engineering - Part B: Reviews, 2017, 23, 237-244.	4.8	232
78	Cardiovascular operations for Loeys-Dietz syndrome: Intermediate-term results. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 406-412.	0.8	51
79	Bilateral Arteriovenous Shunts as a Method for Evaluating Tissue-Engineered Vascular Grafts in Large Animal Models. Tissue Engineering - Part C: Methods, 2017, 23, 728-735.	2.1	24
80	Early and late outcomes after surgical repair of congenital supravalvular aortic stenosis: a European Congenital Heart Surgeons Association multicentric studyâ€. European Journal of Cardio-thoracic Surgery, 2017, 52, 789-797.	1.4	19
81	Creation of Cardiac Tissue Exhibiting Mechanical Integration of Spheroids Using 3D Bioprinting. Journal of Visualized Experiments, 2017, , .	0.3	36
82	Invited Commentary. Annals of Thoracic Surgery, 2017, 104, 1976.	1.3	0
83	Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Scientific Reports, 2017, 7, 4566.	3.3	197
84	Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 924-932.	0.8	86
85	Simplified mitral valve repair in pediatric patients with connective tissue disorders. Journal of Thoracic and Cardiovascular Surgery, 2017, 153, 399-403.	0.8	11
86	Cesarean section in the setting of severe pulmonary hypertension requiring extracorporeal life support. General Thoracic and Cardiovascular Surgery, 2017, 65, 532-534.	0.9	8
87	Left heart decompression in patients supported with extracorporeal membrane oxygenation for cardiac disease. Postepy W Kardiologii Interwencyjnej, 2017, 1, 1-2.	0.2	1
88	The use of 3D printing in cardiac surgery. Journal of Thoracic Disease, 2017, 9, 2301-2302.	1.4	6
89	3Dâ€Printed Biodegradable Polymeric Vascular Grafts. Advanced Healthcare Materials, 2016, 5, 319-325.	7.6	128
90	Tissue-engineered cardiac patch seeded with human induced pluripotent stem cell derived cardiomyocytes promoted the regeneration of host cardiomyocytes in a rat model. Journal of Cardiothoracic Surgery, 2016, 11, 163.	1.1	43

#	Article	IF	CITATIONS
91	Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regenerative Medicine, 2016, 11, 159-167.	1.7	29
92	TGFâ€Î² receptor 1 inhibition prevents stenosis of tissueâ€engineered vascular grafts by reducing host mononuclear phagocyte activation. FASEB Journal, 2016, 30, 2627-2636.	0.5	26
93	Three Dimensional Printing. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 351-352.	0.8	17
94	Single-Stage Total Arch Replacement Including Resection of Kommerell Diverticulum in a Patient With Loeys-Dietz Syndrome. World Journal for Pediatric & Congenital Heart Surgery, 2016, 7, 651-654.	0.8	1
95	Association of nadir oxygen delivery on cardiopulmonary bypass with serum glial fibrillary acid protein levels in paediatric heart surgery patients. Interactive Cardiovascular and Thoracic Surgery, 2016, 23, 531-537.	1.1	16
96	Novel Association of miR-451 with the Incidence of TEVG Stenosis in a Murine Model. Tissue Engineering - Part A, 2016, 22, 75-82.	3.1	6
97	Effect of cell seeding on neotissue formation in a tissue engineered trachea. Journal of Pediatric Surgery, 2016, 51, 49-55.	1.6	24
98	Tissue-Engineered Small Diameter Arterial Vascular Grafts from Cell-Free Nanofiber PCL/Chitosan Scaffolds in a Sheep Model. PLoS ONE, 2016, 11, e0158555.	2.5	156
99	Preliminary Experience in the Use of an Extracellular Matrix (CorMatrix) as a Tube. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 295-296.	0.6	2
100	TGFβR1 Inhibition Blocks the Formation of Stenosis in Tissue-Engineered Vascular Grafts. Journal of the American College of Cardiology, 2015, 65, 512-514.	2.8	27
101	Potential Molecular Mechanism of Retrograde Aortic Arch Stenosis in the Hybrid Approach toÂHypoplastic Left Heart Syndrome. Annals of Thoracic Surgery, 2015, 100, 1013-1020.	1.3	1
102	The innate immune system contributes to tissueâ€engineered vascular graft performance. FASEB Journal, 2015, 29, 2431-2438.	0.5	58
103	Preliminary Experience in the Use of an Extracellular Matrix (CorMatrix) as a Tube Graft: Word of Caution. Seminars in Thoracic and Cardiovascular Surgery, 2015, 27, 288-295.	0.6	16
104	Cilostazol, Not Aspirin, Prevents Stenosis of Bioresorbable Vascular Grafts in a Venous Model. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 2003-2010.	2.4	17
105	Single center experience on dosing and adverse events of recombinant factor seven use for bleeding after congenital heart surgery. Journal of the Saudi Heart Association, 2015, 27, 18-22.	0.4	6
106	Reinforced Pericardium as a Hybrid Material for Cardiovascular Applications. Tissue Engineering - Part A, 2014, 20, 2807-2816.	3.1	24
107	Growth of Diminutive Central Pulmonary Arteries After Right Ventricle to Pulmonary Artery Homograft Implantation. Annals of Thoracic Surgery, 2014, 97, 2129-2133.	1.3	23
108	Development and assessment of a biodegradable solvent cast polyester fabric smallâ€diameter vascular graft. Journal of Biomedical Materials Research - Part A, 2014, 102, 1972-1981.	4.0	23

#	Article	IF	CITATIONS
109	Something to consider: Porcine intestinal submucosa as a biologic scaffold, not a simple patch. Journal of Thoracic and Cardiovascular Surgery, 2014, 148, 1767-1769.	0.8	3
110	Implantation of Inferior Vena Cava Interposition Graft in Mouse Model. Journal of Visualized Experiments, 2014, , .	0.3	20
111	Transplantation of Pulmonary Valve Using a Mouse Model of Heterotopic Heart Transplantation. Journal of Visualized Experiments, 2014, , .	0.3	6
112	Vessel Bioengineering. Circulation Journal, 2014, 78, 12-19.	1.6	76
113	Strategies and Techniques to Enhance the <i>In Situ</i> Endothelialization of Small-Diameter Biodegradable Polymeric Vascular Grafts. Tissue Engineering - Part B: Reviews, 2013, 19, 292-307.	4.8	152
114	Characterization of the Natural History of Extracellular Matrix Production in Tissue-Engineered Vascular Grafts during Neovessel Formation. Cells Tissues Organs, 2012, 195, 60-72.	2.3	64
115	Evaluation of the use of an induced puripotent stem cell sheet for the construction of tissue-engineered vascular grafts. Journal of Thoracic and Cardiovascular Surgery, 2012, 143, 696-703.	0.8	99
116	Partial anomalous pulmonary venous connection with anomalous connection of the superior vena cava to the left atrium. Journal of Thoracic and Cardiovascular Surgery, 2012, 144, e1-e3.	0.8	18
117	Reconstruction of cavopulmonary pathway for the patient with persistent arteriovenous malformations due to offset flow from hepatic vein. Journal of the Saudi Heart Association, 2012, 24, 51-54.	0.4	1
118	Vascular tissue engineering: Towards the next generation vascular grafts. Advanced Drug Delivery Reviews, 2011, 63, 312-323.	13.7	206
119	Determining the fate of seeded cells in venous tissueâ€engineered vascular grafts using serial MRI. FASEB Journal, 2011, 25, 4150-4161.	0.5	53
120	Tissueâ€engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB Journal, 2011, 25, 2731-2739.	0.5	136
121	Comparison of Human Bone Marrow Mononuclear Cell Isolation Methods for Creating Tissue-Engineered Vascular Grafts: Novel Filter System Versus Traditional Density Centrifugation Method. Tissue Engineering - Part C: Methods, 2011, 17, 993-998.	2.1	38
122	A critical role for macrophages in neovessel formation and the development of stenosis in tissueâ€engineered vascular grafts. FASEB Journal, 2011, 25, 4253-4263.	0.5	199
123	Late-term results of tissue-engineered vascular grafts in humans. Journal of Thoracic and Cardiovascular Surgery, 2010, 139, 431-436.e2.	0.8	449
124	Two-Stage Surgical Repair for Truncus Arteriosus with Unilateral Absence of the Left Proximal Pulmonary Artery: Translocation of the Left Pulmonary Artery to the Right Pulmonary Artery. Journal of Cardiac Surgery, 2010, 25, 90-92.	0.7	3
125	Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4669-4674.	7.1	495
126	Cell-Seeding Techniques in Vascular Tissue Engineering. Tissue Engineering - Part B: Reviews, 2010, 16, 341-350.	4.8	180

#	Article	IF	CITATIONS
127	Tissue-engineered vascular grafts: does cell seeding matter?. Journal of Pediatric Surgery, 2010, 45, 1299-1305.	1.6	62
128	Characterization of small-diameter electrospun tissue-engineered arterial grafts. Journal of the American College of Surgeons, 2009, 209, S30.	0.5	2
129	Tissue-engineered arterial grafts: long-term results after implantation in a small animal model. Journal of Pediatric Surgery, 2009, 44, 1127-1133.	1.6	52
130	A novel method to reduce pericardial adhesion: A combination technique with hyaluronic acid biocompatible membrane. Journal of Thoracic and Cardiovascular Surgery, 2008, 135, 850-856.	0.8	34
131	Preoperative Autologous Blood Donation for Cardiac Surgery in Children. Asian Cardiovascular and Thoracic Annals, 2008, 16, 21-24.	0.5	12
132	Total cavopulmonary connection for functionally single ventricle with pulmonary atresia and abnormal arborization of pulmonary arteries - exclusion of overwhelmed area by collateral arteries from Fontan circulation. Interactive Cardiovascular and Thoracic Surgery, 2008, 7, 1180-1182.	1.1	2
133	Tissue-engineered Vascular Grafts Demonstrate Evidence of Growth and Development When Implanted in a Juvenile Animal Model. Annals of Surgery, 2008, 248, 370-377.	4.2	140
134	Intraoperative Aortic Dissection in Pediatric Heart Surgery. Asian Cardiovascular and Thoracic Annals, 2006, 14, e55-e57.	0.5	4
135	The tissue-engineered vascular graft using bone marrow without culture. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1064-1070.	0.8	104
136	Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. Journal of Thoracic and Cardiovascular Surgery, 2005, 129, 1330-1338.	0.8	524
137	Fontan operation for hypoplastic left heart syndrome with absent aortic valve. Journal of Thoracic and Cardiovascular Surgery, 2004, 128, 315-316.	0.8	9
138	Extracardiac total cavopulmonary connection using a tissue-engineered graft. Journal of Thoracic and Cardiovascular Surgery, 2003, 126, 1958-1962.	0.8	31
139	Successful application of tissue engineered vascular autografts: clinical experience. Biomaterials, 2003, 24, 2303-2308.	11.4	260
140	Delayed Presentation of Injury to the Sinus of Valsalva with Aortic Regurgitation Resulting from Penetrating Cardiac Wounds. Journal of Cardiac Surgery, 2003, 18, 236-239.	0.7	12
141	Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. Journal of Thoracic and Cardiovascular Surgery, 2003, 125, 419-420.	0.8	77
142	Unexpected durability of smeloff-cutter aortic ball valve prosthesis. Annals of Thoracic Surgery, 2003, 75, 1633-1635.	1.3	9
143	Long-Term Histologic Findings in Pulmonary Arteries Reconstructed with Autologous Pericardium. New England Journal of Medicine, 2003, 348, 865-867.	27.0	20
144	How to establish myocardial protection during aortic arch operation in patients with patent left internal thoracic artery graft: Careful dissection or no touch technique?. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 1254-1255.	0.8	7

#	Article	IF	CITATIONS
145	Aortic regurgitation caused by rupture of a well-balanced fibrous strand suspending a degenerative tricuspid aortic valve. Journal of Thoracic and Cardiovascular Surgery, 2002, 124, 843-844.	0.8	20
146	Tissue-Engineered Vascular Autograft: Inferior Vena Cava Replacement in a Dog Model. Tissue Engineering, 2001, 7, 429-439.	4.6	204
147	Double switch operation for superior-inferior ventricles. Annals of Thoracic Surgery, 2001, 72, 2119-2121.	1.3	7
148	Human Atrial Natriuretic Peptide Infusion for a Neonate With Congestive Heart Failure After Total Correction of Total Anomalous Pulmonary Venous Connection. Japanese Circulation Journal, 2000, 64, 708-710.	1.0	1
149	Current status of tissue engineering for cardiovascular structures. Journal of Artificial Organs, 2000, 3, 102-106.	0.9	1