Paula Schiapparelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360596/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The endosomal pH regulator NHE9 is a driver of stemness in glioblastoma. , 2022, 1, pgac013.		0
2	Alpha 1-antichymotrypsin contributes to stem cell characteristics and enhances tumorigenicity of glioblastoma. Neuro-Oncology, 2021, 23, 599-610.	1.2	23
3	Circulatory shear stress induces molecular changes and side population enrichment in primary tumor-derived lung cancer cells with higher metastatic potential. Scientific Reports, 2021, 11, 2800.	3.3	16
4	Phosphorylated WNK kinase networks in recoded bacteria recapitulate physiological function. Cell Reports, 2021, 36, 109416.	6.4	5
5	Functional Characterization of Brain Tumor-Initiating Cells and Establishment of GBM Preclinical Models that Incorporate Heterogeneity, Therapy, and Sex Differences. Molecular Cancer Therapeutics, 2021, 20, 2585-2597.	4.1	16
6	A microfluidic cell-migration assay for the prediction of progression-free survival and recurrence time of patients with glioblastoma. Nature Biomedical Engineering, 2021, 5, 26-40.	22.5	38
7	Strategies to Modulate the Blood-Brain Barrier for Directed Brain Tumor Targeting. Neuromethods, 2021, , 79-108.	0.3	1
8	Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. Journal of Controlled Release, 2020, 319, 311-321.	9.9	53
9	Engineering Three-Dimensional Tumor Models to Study Glioma Cancer Stem Cells and Tumor Microenvironment. Frontiers in Cellular Neuroscience, 2020, 14, 558381.	3.7	38
10	Melatonin Disrupts Glioblastoma Metabolism and Enhances Temozolomide Cytotoxic Effects. Neurosurgery, 2019, 66, 310-644.	1.1	0
11	Functional Characterization of Brain Tumor-Initiating Cells: Implications for Preclinical Models and Drug Development. Neurosurgery, 2019, 66, 310-807.	1.1	1
12	Animal Models of Brain Tumor Surgery. , 2019, , 169-190.		0
13	Cancer-selective nanoparticles for combinatorial siRNA delivery to primary human GBM in vitro and in vivo. Biomaterials, 2019, 209, 79-87.	11.4	69
14	A Human iPSC-derived 3D platform using primary brain cancer cells to study drug development and personalized medicine. Scientific Reports, 2019, 9, 1407.	3.3	61
15	Verteporfin-Loaded Polymeric Microparticles for Intratumoral Treatment of Brain Cancer. Molecular Pharmaceutics, 2019, 16, 1433-1443.	4.6	40
16	Verteporfin-Loaded Anisotropic Poly(Beta-Amino Ester)-Based Micelles Demonstrate Brain Cancer-Selective Cytotoxicity and Enhanced Pharmacokinetics. International Journal of Nanomedicine, 2019, Volume 14, 10047-10060.	6.7	18
17	The Study of Brain Tumor Stem Cell Migration. Methods in Molecular Biology, 2019, 1869, 93-104.	0.9	7
18	Nanotherapeutic systems for local treatment of brain tumors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1479.	6.1	51

PAULA SCHIAPPARELLI

#	Article	IF	CITATIONS
19	EXTH-06. CD38-TARGETED THERAPY IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi86-vi86.	1.2	Ο
20	CD38-targeted therapy in glioblastoma: A step forward Journal of Clinical Oncology, 2018, 36, e14030-e14030.	1.6	4
21	Brief Report: Robo1 Regulates the Migration of Human Subventricular Zone Neural Progenitor Cells During Development. Stem Cells, 2017, 35, 1860-1865.	3.2	16
22	Electrophoresis of cell membrane heparan sulfate regulates galvanotaxis in glial cells. Journal of Cell Science, 2017, 130, 2459-2467.	2.0	16
23	Characterization of PTEN mutations in brain cancer reveals that pten mono-ubiquitination promotes protein stability and nuclear localization. Oncogene, 2017, 36, 3673-3685.	5.9	82
24	Brachyury-YAP Regulatory Axis Drives Stemness and Growth in Cancer. Cell Reports, 2017, 21, 495-507.	6.4	59
25	NKCC1 Regulates Migration Ability of Glioblastoma Cells by Modulation of Actin Dynamics and Interacting with Cofilin. EBioMedicine, 2017, 21, 94-103.	6.1	58
26	Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells. Theranostics, 2016, 6, 1065-1074.	10.0	56
27	EXTH-43. NOVEL LOCAL TREATMENT FOR GLIOBLASTOMA USING SELF-ASSEMBLING HYDROGELS. Neuro-Oncology, 2016, 18, vi68-vi69.	1.2	0
28	Cellular microenvironment modulates the galvanotaxis of brain tumor initiating cells. Scientific Reports, 2016, 6, 21583.	3.3	36
29	Brain-on-a-chip model enables analysis of human neuronal differentiation and chemotaxis. Lab on A Chip, 2016, 16, 4152-4162.	6.0	119
30	Non-virally engineered human adipose mesenchymal stem cells produce BMP4, target brain tumors, and extend survival. Biomaterials, 2016, 100, 53-66.	11.4	84
31	Regulation of Glioblastoma Tumor-Propagating Cells by the Integrin Partner Tetraspanin CD151. Neoplasia, 2016, 18, 185-198.	5.3	22
32	Migration Phenotype of Brain-Cancer Cells Predicts Patient Outcomes. Cell Reports, 2016, 15, 2616-2624.	6.4	63
33	ATPS-90EFFICACY OF NON-VIRAL ENGINEERED ADIPOSE MESENCHYMAL STEM CELLS FOR BRAIN TUMOR THERAPY. Neuro-Oncology, 2015, 17, v38.2-v38.	1.2	0
34	Abstract 444: Slit2 stimulation induces a chemorepellent effect on the migration of human GBM brain tumor initiating cells. , 2015, , .		1
35	Regulation of Brain Tumor Dispersal by NKCC1 Through a Novel Role in Focal Adhesion Regulation. PLoS Biology, 2012, 10, e1001320.	5.6	140
36	Inhibition of the sonic hedgehog pathway by cyplopamine reduces the CD133+/CD15+ cell compartment and the in vitro tumorigenic capability of neuroblastoma cells. Cancer Letters, 2011, 310, 222-231.	7.2	33

PAULA SCHIAPPARELLI

#	ARTICLE	IF	CITATIONS
37	KIT expression and methylation in medulloblastoma and PNET cell lines and tumors. Journal of Neuro-Oncology, 2011, 103, 247-253.	2.9	10
38	Expression and epigenetic modulation of sonic hedgehog-GLI1 pathway genes in neuroblastoma cell lines and tumors. Tumor Biology, 2011, 32, 113-127.	1.8	30
39	Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. Oncology Reports, 2010, 24, 1355-62.	2.6	20
40	CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133â^' cells. Tumor Biology, 2010, 31, 381-390.	1.8	21
41	Abstract 5247: Analysis of stemness gene expression and CD133 abnormal methylation in neuroblastoma cell lines. , 2010, , .		0