
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/936059/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An impedimetric immunosensor for the selective detection of CD34+ T-cells in human serum. Sensors<br>and Actuators B: Chemical, 2022, 356, 131306.                                                                        | 7.8  | 8         |
| 2  | Molecular Analysis: BioFET Detection Sensors. , 2022, , 631-649.                                                                                                                                                          |      | 0         |
| 3  | Wastewater-based epidemiology in hazard forecasting and early-warning systems for global health risks. Environment International, 2022, 161, 107143.                                                                      | 10.0 | 8         |
| 4  | Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochimica Acta, 2022, 189, 172.                                                                                                       | 5.0  | 35        |
| 5  | Impedimetric aptamer-based glycan PSA score for discrimination of prostate cancer from other prostate diseases. Biosensors and Bioelectronics, 2021, 175, 112872.                                                         | 10.1 | 38        |
| 6  | Hydrogelâ€Forming Microneedles: Current Advancements and Future Trends. Macromolecular<br>Bioscience, 2021, 21, e2000307.                                                                                                 | 4.1  | 160       |
| 7  | Strategies for Multiplexed Electrochemical Sensor Development. Studies in Systems, Decision and Control, 2021, , 63-93.                                                                                                   | 1.0  | 5         |
| 8  | Graphene Enabled Lowâ€Noise Surface Chemistry for Multiplexed Sepsis Biomarker Detection in Whole<br>Blood. Advanced Functional Materials, 2021, 31, 2010638.                                                             | 14.9 | 54        |
| 9  | Electrochemical Biosensors for Cytokine Profiling: Recent Advancements and Possibilities in the Near<br>Future. Biosensors, 2021, 11, 94.                                                                                 | 4.7  | 27        |
| 10 | Electrochemical Biosensors: Graphene Enabled Lowâ€Noise Surface Chemistry for Multiplexed Sepsis<br>Biomarker Detection in Whole Blood (Adv. Funct. Mater. 16/2021). Advanced Functional Materials, 2021,<br>31, 2170107. | 14.9 | 1         |
| 11 | Impact of surface roughness on the self-assembling of molecular films onto gold electrodes for<br>label-free biosensing applications. Electrochimica Acta, 2021, 378, 138137.                                             | 5.2  | 15        |
| 12 | Printable graphene BioFETs for DNA quantification in Lab-on-PCB microsystems. Scientific Reports, 2021, 11, 9815.                                                                                                         | 3.3  | 32        |
| 13 | Utilising Commercially Fabricated Printed Circuit Boards as an Electrochemical Biosensing Platform.<br>Micromachines, 2021, 12, 793.                                                                                      | 2.9  | 7         |
| 14 | Multiplexed Prostate Cancer Companion Diagnostic Devices. Sensors, 2021, 21, 5023.                                                                                                                                        | 3.8  | 12        |
| 15 | Pre-concentration of microRNAs by LNA-modified magnetic beads for enhancement of electrochemical detection. Scientific Reports, 2021, 11, 19650.                                                                          | 3.3  | 6         |
| 16 | Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sensors and Actuators B: Chemical, 2020, 307, 127620.                                                           | 7.8  | 75        |
| 17 | Label-Free DNA Biosensor Using Modified Reduced Graphene Oxide Platform as a DNA Methylation<br>Assay. Materials, 2020, 13, 4936.                                                                                         | 2.9  | 16        |
| 18 | Biogenic preparation of doughnut shaped manganese nanograins embellished on graphene for<br>superior interfacial binding of biomarkers. Journal of Materials Research and Technology, 2020, 9,<br>9896-9906.              | 5.8  | 7         |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Ultra stable, inkjet-printed pseudo reference electrodes for lab-on-chip integrated electrochemical biosensors. Scientific Reports, 2020, 10, 17152.                                                                   | 3.3  | 12        |
| 20 | Integrated Electrochemical Biosensors for Detection of Waterborne Pathogens in Low-Resource<br>Settings. Biosensors, 2020, 10, 36.                                                                                     | 4.7  | 39        |
| 21 | Towards an intuitive human-robot interaction based on hand gesture recognition and proximity sensors. , 2020, , .                                                                                                      |      | 10        |
| 22 | Electrochemical ELISA Protein Biosensing in Undiluted Serum Using a Polypyrrole-Based Platform.<br>Sensors, 2020, 20, 2857.                                                                                            | 3.8  | 11        |
| 23 | Electrochemical aptasensor using optimized surface chemistry for the detection of Mycobacterium<br>tuberculosis secreted protein MPT64 in human serum. Biosensors and Bioelectronics, 2019, 123, 141-151.              | 10.1 | 46        |
| 24 | Effect of Graphene Oxide Modification on a DNA Biosensor Developed for the Detection of Methylated<br>DNA Associated with Cancer. Proceedings (mdpi), 2019, 15, .                                                      | 0.2  | 0         |
| 25 | Extracellular Electrophysiology in the Prostate Cancer Cell Model PC-3. Sensors, 2019, 19, 139.                                                                                                                        | 3.8  | 21        |
| 26 | In-situ synthesis of 3D ultra-small gold augmented graphene hybrid for highly sensitive<br>electrochemical binding capability. Journal of Colloid and Interface Science, 2019, 553, 289-297.                           | 9.4  | 10        |
| 27 | Gold interdigitated triple-microelectrodes for label-free prognosticative aptasensing of prostate cancer biomarker in serum. Biosensors and Bioelectronics, 2019, 136, 118-127.                                        | 10.1 | 57        |
| 28 | Reduced graphene-oxide transducers for biosensing applications beyond the Debye-screening limit.<br>Biosensors and Bioelectronics, 2019, 130, 352-359.                                                                 | 10.1 | 15        |
| 29 | A PNA-based Lab-on-PCB diagnostic platform for rapid and high sensitivity DNA quantification.<br>Biosensors and Bioelectronics, 2019, 123, 244-250.                                                                    | 10.1 | 52        |
| 30 | Development of an aptamer-based field effect transistor biosensor for quantitative detection of<br>Plasmodium falciparum glutamate dehydrogenase in serum samples. Biosensors and Bioelectronics,<br>2019, 123, 30-35. | 10.1 | 54        |
| 31 | Sensitive and selective Affimer-functionalised interdigitated electrode-based capacitive biosensor for<br>Her4 protein tumour biomarker detection. Biosensors and Bioelectronics, 2018, 108, 1-8.                      | 10.1 | 57        |
| 32 | Collective electrical oscillations of a diatom population induced by dark stress. Scientific Reports, 2018, 8, 5484.                                                                                                   | 3.3  | 9         |
| 33 | Development of a Sensitive Multiplexed Open Circuit Potential System for the Detection of Prostate<br>Cancer Biomarkers. BioNanoScience, 2018, 8, 701-706.                                                             | 3.5  | 14        |
| 34 | Capacitive aptasensor based on interdigitated electrode for breast cancer detection in undiluted human serum. Biosensors and Bioelectronics, 2018, 102, 106-112.                                                       | 10.1 | 119       |
| 35 | Microfluidic Devices for Label-Free DNA Detection. Chemosensors, 2018, 6, 43.                                                                                                                                          | 3.6  | 38        |
| 36 | Exploiting the signatures of nanoplasmon–exciton coupling on proton sensitive<br>insulator–semiconductor devices for drug discovery applications. Nanoscale, 2018, 10, 13320-13328.                                    | 5.6  | 3         |

| #  | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Top-Down Fabricated Silicon Nanowire Arrays for Field-Effect Detection of Prostate-Specific Antigen.<br>ACS Omega, 2018, 3, 8471-8482.                                                                                | 3.5  | 31        |
| 38 | Electrochemical ELISA-based platform for bladder cancer protein biomarker detection in urine.<br>Biosensors and Bioelectronics, 2018, 117, 620-627.                                                                   | 10.1 | 45        |
| 39 | Recent Advances in Enhancement Strategies for Electrochemical ELISA-Based Immunoassays for Cancer<br>Biomarker Detection. Sensors, 2018, 18, 2010.                                                                    | 3.8  | 75        |
| 40 | Capacitive malaria aptasensor using Plasmodium falciparum glutamate dehydrogenase as target antigen in undiluted human serum. Biosensors and Bioelectronics, 2018, 117, 246-252.                                      | 10.1 | 50        |
| 41 | Electrochemical immunosensor for tumor necrosis factor-alpha detection in undiluted serum.<br>Methods, 2017, 116, 125-131.                                                                                            | 3.8  | 32        |
| 42 | Self-assembled gold nanoparticles for impedimetric and amperometric detection of a prostate cancer biomarker. Sensors and Actuators B: Chemical, 2017, 251, 637-643.                                                  | 7.8  | 52        |
| 43 | Aptamer-based Field-Effect Biosensor for Tenofovir Detection. Scientific Reports, 2017, 7, 44409.                                                                                                                     | 3.3  | 66        |
| 44 | Nanomaterial Fungicides: In Vitro and In Vivo Antimycotic Activity of Cobalt and Nickel Nanoferrites on Phytopathogenic Fungi. Global Challenges, 2017, 1, 1700041.                                                   | 3.6  | 57        |
| 45 | A Peptide Nucleic Acid (PNA)â€DNA Ferrocenyl Intercalator for Electrochemical Sensing.<br>Electroanalysis, 2017, 29, 917-922.                                                                                         | 2.9  | 11        |
| 46 | Semiconductor technology in protein kinase research and drug discovery: sensing a revolution. Drug<br>Discovery Today, 2017, 22, 204-209.                                                                             | 6.4  | 4         |
| 47 | Raman and Mössbauer spectroscopic studies of tungsten doped Ni–Zn nano ferrite. Journal of<br>Materials Science: Materials in Electronics, 2017, 28, 679-685.                                                         | 2.2  | 12        |
| 48 | Nucleic Acid-Based Aptasensors for Cancer Diagnostics: An Insight into Immobilisation Strategies. ,<br>2017, , 205-231.                                                                                               |      | 1         |
| 49 | Electrochemical and SERS Based Biosensors for Cancer Biomarkers Detection. Proceedings (mdpi), 2017, 1, .                                                                                                             | 0.2  | 0         |
| 50 | Biosensors for Screening Kinase Inhibitors. Current Topics in Medicinal Chemistry, 2017, 17, 2470-2481.                                                                                                               | 2.1  | 0         |
| 51 | Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.<br>Sensors, 2016, 16, 2128.                                                                                             | 3.8  | 8         |
| 52 | Inexpensive and fast pathogenic bacteria screening using field-effect transistors. Biosensors and<br>Bioelectronics, 2016, 85, 103-109.                                                                               | 10.1 | 33        |
| 53 | Cadmium Sulfide Nanoparticles Decorated with Au Quantum Dots as Ultrasensitive<br>Photoelectrochemical Sensor for Selective Detection of Copper(II) Ions. Journal of Physical<br>Chemistry C, 2016, 120, 22202-22214. | 3.1  | 71        |
| 54 | Introduction to biosensors. Essays in Biochemistry, 2016, 60, 1-8.                                                                                                                                                    | 4.7  | 858       |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Oligonucleotide-based systems: DNA, microRNAs, DNA/RNA aptamers. Essays in Biochemistry, 2016, 60, 27-35.                                                                                       | 4.7  | 26        |
| 56 | Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 2016, 60, 69-80.                                                                                                         | 4.7  | 265       |
| 57 | Hybrid Synthetic Receptors on MOSFET Devices for Detection of Prostate Specific Antigen in Human<br>Plasma. Analytical Chemistry, 2016, 88, 11486-11490.                                        | 6.5  | 35        |
| 58 | Highly sensitive dual mode electrochemical platform for microRNA detection. Scientific Reports, 2016, 6, 36719.                                                                                 | 3.3  | 64        |
| 59 | Electro-Engineered Polymeric Films for the Development of Sensitive Aptasensors for Prostate Cancer<br>Marker Detection. ACS Sensors, 2016, 1, 1308-1314.                                       | 7.8  | 35        |
| 60 | Community Sewage Sensors towards Evaluation of Drug Use Trends: Detection of Cocaine in<br>Wastewater with DNA-Directed Immobilization Aptamer Sensors. Scientific Reports, 2016, 6, 21024.     | 3.3  | 35        |
| 61 | Label-Free Ultrasensitive Memristive Aptasensor. Nano Letters, 2016, 16, 4472-4476.                                                                                                             | 9.1  | 87        |
| 62 | DNA aptamer-based sandwich microfluidic assays for dual quantification and multi-glycan profiling of cancer biomarkers. Biosensors and Bioelectronics, 2016, 79, 313-319.                       | 10.1 | 61        |
| 63 | Aptamer–MIP hybrid receptor for highly sensitive electrochemical detection of prostate specific antigen. Biosensors and Bioelectronics, 2016, 75, 188-195.                                      | 10.1 | 231       |
| 64 | Biosensors – Topical issue. Chemical Papers, 2015, 69, 1-3.                                                                                                                                     | 2.2  | 5         |
| 65 | Boronâ€Doped Diamond Dualâ€Plate Deepâ€Microtrench Device for Generatorâ€Collector Sulfide Sensing.<br>Electroanalysis, 2015, 27, 2645-2653.                                                    | 2.9  | 6         |
| 66 | Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors. Sensors, 2015, 15, 25015-25032.                                                           | 3.8  | 50        |
| 67 | Point-of-Care Diagnostics in Low Resource Settings: Present Status and Future Role of Microfluidics.<br>Biosensors, 2015, 5, 577-601.                                                           | 4.7  | 259       |
| 68 | Optimisation of an electrochemical impedance spectroscopy aptasensor by exploiting quartz crystal microbalance with dissipation signals. Sensors and Actuators B: Chemical, 2015, 220, 369-375. | 7.8  | 58        |
| 69 | A simple and highly sensitive electrochemical platform for detection of MicroRNAs. , 2015, , .                                                                                                  |      | 4         |
| 70 | Ferroceneâ€Boronic Acid–Fructose Binding Based on Dualâ€Plate Generator–Collector Voltammetry and<br>Squareâ€Wave Voltammetry. ChemElectroChem, 2015, 2, 867-871.                               | 3.4  | 6         |
| 71 | Multimodal electrochemical and nanoplasmonic biosensors using ferrocene-crowned nanoparticles for kinase drug discovery applications. Electrochemistry Communications, 2015, 57, 70-73.         | 4.7  | 18        |
| 72 | DNA aptamer-based detection of prostate cancer. Chemical Papers, 2015, 69, .                                                                                                                    | 2.2  | 41        |

| #  | Article                                                                                                                                                                                                                       | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Community Sewage Sensors for Monitoring Public Health. Environmental Science & Technology, 2015, 49, 5845-5846.                                                                                                               | 10.0 | 56        |
| 74 | Plasmonic ruler on field-effect devices for kinase drug discovery applications. Biosensors and Bioelectronics, 2015, 71, 121-128.                                                                                             | 10.1 | 23        |
| 75 | A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst, The, 2015, 140, 2628-2633. | 3.5  | 59        |
| 76 | A Novel DNA Biosensor Using a Ferrocenyl Intercalator Applied to the Potential Detection of Human<br>Population Biomarkers in Wastewater. Environmental Science & Technology, 2015, 49, 5609-5617.                            | 10.0 | 44        |
| 77 | Protein phosphorylation detection using dual-mode field-effect devices and nanoplasmonic sensors.<br>Scientific Reports, 2015, 5, 8687.                                                                                       | 3.3  | 32        |
| 78 | Label-free impedimetric aptasensor with antifouling surface chemistry: A prostate specific antigen case study. Sensors and Actuators B: Chemical, 2015, 209, 306-312.                                                         | 7.8  | 134       |
| 79 | Molecular Analysis: BioFET Detection Sensors. , 2015, , 1-19.                                                                                                                                                                 |      | 0         |
| 80 | Field-Effect Transistors: Current Advances and Challenges in Bringing Them to Point-of-Care. , 2015, , 353-371.                                                                                                               |      | 3         |
| 81 | Switching of electrochemical characteristics of redox protein upon specific biomolecular interactions. Analyst, The, 2014, 139, 6118-6121.                                                                                    | 3.5  | 3         |
| 82 | Cysteine-Cystine Redox Cycling in a Gold–Gold Dual-Plate Generator-Collector Microtrench Sensor.<br>Analytical Chemistry, 2014, 86, 6748-6752.                                                                                | 6.5  | 26        |
| 83 | Protein phosphorylation analysis based on proton release detection: Potential tools for drug discovery. Biosensors and Bioelectronics, 2014, 54, 109-114.                                                                     | 10.1 | 30        |
| 84 | A novel cobalt complex for enhancing amperometric and impedimetric DNA detection. Electrochimica<br>Acta, 2014, 128, 10-15.                                                                                                   | 5.2  | 10        |
| 85 | Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors, 2014, 4, 172-188.                                                                                                          | 4.7  | 142       |
| 86 | Electrowetting enabled magnetic particle immunoassay with on-chip magnetic washing. , 2013, , .                                                                                                                               |      | 0         |
| 87 | Nanoparticle-Induced Catalysis for Electrochemical DNA Biosensors Arben MerkocÂ,i. , 2012, , 159-180.                                                                                                                         |      | 0         |
| 88 | Biomolecular and electrochemical charge detection by a micromechanical electrometer. Sensors and Actuators B: Chemical, 2011, 160, 301-305.                                                                                   | 7.8  | 15        |
| 89 | Single-crystal study on the heavy-fermion antiferromagnet UZn <sub>12</sub> . Journal of Physics<br>Condensed Matter, 2011, 23, 045602.                                                                                       | 1.8  | 1         |
| 90 | Fabrication of BioFET linear array for detection of protein interactions. Microelectronic Engineering, 2010, 87, 753-755.                                                                                                     | 2.4  | 14        |

| #   | Article                                                                                                                                                                       | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Label-Free Sub-picomolar Protein Detection with Field-Effect Transistors. Analytical Chemistry, 2010, 82, 3531-3536.                                                          | 6.5  | 61        |
| 92  | Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors.<br>Sensors, 2010, 10, 5133-5159.                                              | 3.8  | 145       |
| 93  | Detection of Molecular Interactions with Modified Ferrocene Self-Assembled Monolayers. Journal of<br>Physical Chemistry B, 2010, 114, 10661-10665.                            | 2.6  | 19        |
| 94  | Label-Free Electrical Biosensor Arrays: A New Challenge for TFT Technology. Journal of the Korean<br>Physical Society, 2009, 54, 498-504.                                     | 0.7  | 10        |
| 95  | Optimization of DNA immobilization on gold electrodes for label-free detection by electrochemical impedance spectroscopy. Biosensors and Bioelectronics, 2008, 23, 1291-1297. | 10.1 | 214       |
| 96  | Optimization of label-free DNA detection with electrochemical impedance spectroscopy using PNA probes. Biosensors and Bioelectronics, 2008, 24, 906-911.                      | 10.1 | 112       |
| 97  | Label-Free Detection of Protein interactions with peptide aptamers by open circuit potential measurement. Electrochimica Acta, 2008, 53, 6489-6496.                           | 5.2  | 35        |
| 98  | Label-free electrical detection of DNA hybridization for the example of influenza virus gene sequences. Analytical Biochemistry, 2008, 374, 143-153.                          | 2.4  | 55        |
| 99  | Application of thin film transistors to label-free electrical biosensors. , 2008, , .                                                                                         |      | 3         |
| 100 | Potentiometric detection of protein interactions with peptide aptamers. , 2008, , .                                                                                           |      | 3         |
| 101 | Self-assembled nanotube field-effect transistors for label-free protein biosensors. Journal of Applied<br>Physics, 2008, 104, .                                               | 2.5  | 24        |
| 102 | Chemical and biological sensors using polycrystalline silicon TFTs. Journal of Materials Chemistry, 2007, 17, 219-224.                                                        | 6.7  | 48        |
| 103 | Field effect detection of biomolecular interactions. Electrochimica Acta, 2005, 50, 4995-5000.                                                                                | 5.2  | 72        |
| 104 | Electrical detection of biomolecular interactions with metal–insulator–semiconductor diodes.<br>Biosensors and Bioelectronics, 2005, 20, 1580-1586.                           | 10.1 | 34        |
| 105 | Polycrystalline silicon ion sensitive field effect transistors. Applied Physics Letters, 2005, 86, 053901.                                                                    | 3.3  | 38        |
| 106 | Polycrystalline Silicon ISFETs on Glass Substrate. Sensors, 2005, 5, 293-301.                                                                                                 | 3.8  | 6         |
| 107 | Thermal expansion of CeCu6â°xAux. Journal of Magnetism and Magnetic Materials, 2004, 272-276, 23-24.                                                                          | 2.3  | 2         |
| 108 | HIGH PRESSURE TRANSPORT STUDY OF NON-FERMI LIQUID BEHAVIOUR IN U2Pt2In AND U3Ni3Sn4.<br>International Journal of Modern Physics B, 2002, 16, 2998-3003.                       | 2.0  | 2         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Pressure-induced recovery of the Fermi-liquid state in the non-Fermi liquid material U2Pt2In. Physica<br>B: Condensed Matter, 2002, 312-313, 482-484.                                        | 2.7 | 1         |
| 110 | High-pressure study of the non-Fermi liquid material U 2 Pt 2 In. European Physical Journal B, 2001, 23, 449-454.                                                                            | 1.5 | 6         |
| 111 | Recovery of the Fermi-liquid state inU3Ni3Sn4by pressure. Physical Review B, 2001, 63, .                                                                                                     | 3.2 | 8         |
| 112 | Muon localization site in U(Pt,Pd)3. Physica B: Condensed Matter, 2000, 289-290, 455-458.                                                                                                    | 2.7 | 6         |
| 113 | Crystal structure and physical properties of U3T3Sn4 (T=Ni, Cu) single crystals. Physica B: Condensed<br>Matter, 2000, 292, 89-96.                                                           | 2.7 | 5         |
| 114 | Resistivity of non-Fermi liquid U2Pt2In under pressure. Physica B: Condensed Matter, 2000, 281-282, 381-383.                                                                                 | 2.7 | 4         |
| 115 | Possible non-Fermi-liquid behaviour in URh1/3Ni2/3Al. Physica B: Condensed Matter, 2000, 281-282, 377-378.                                                                                   | 2.7 | 5         |
| 116 | Magnetic Quantum Critical Point and Superconductivity inUPt3Doped with Pd. Physical Review Letters, 2000, 85, 3005-3008.                                                                     | 7.8 | 23        |
| 117 | Magnetization density distribution in. Journal of Physics Condensed Matter, 1999, 11, 2115-2125.                                                                                             | 1.8 | 2         |
| 118 | Non-Fermi-liquid behaviour of U3-xNi3Sn4-ysingle crystals. Journal of Physics Condensed Matter, 1999,<br>11, 3525-3534.                                                                      | 1.8 | 7         |
| 119 | Non-Fermi-liquid behaviour in U2Pt2In. Physica B: Condensed Matter, 1999, 259-261, 409-411.                                                                                                  | 2.7 | 17        |
| 120 | Non-Fermi liquid behavior in U3â^'xNi3Sn4â^'y single crystals. Physica B: Condensed Matter, 1999, 259-261,<br>423-425.                                                                       | 2.7 | 3         |
| 121 | Magnetic and transport properties of U2Pt2In single crystals. Journal of Magnetism and Magnetic<br>Materials, 1999, 196-197, 885-887.                                                        | 2.3 | 3         |
| 122 | Crystallographic and magnetic properties of UFe5.8Al6.2 single crystals. Journal of Magnetism and<br>Magnetic Materials, 1998, 189, 283-292.                                                 | 2.3 | 14        |
| 123 | Structural, magnetic and transport properties of single-crystalline. Journal of Physics Condensed<br>Matter, 1998, 10, 9465-9475.                                                            | 1.8 | 15        |
| 124 | Single crystal magnetisation of UFe10Mo2. Journal of Magnetism and Magnetic Materials, 1997, 167,<br>L185-L188.                                                                              | 2.3 | 3         |
| 125 | Anomalous magnetisation process in UFe4Al8 probed by magnetisation and magnetoresistance. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 690-691.                               | 2.3 | 5         |
| 126 | Magnetic phase transitions in RFe9.5Mo2.5 intermetallics studied by 57Fe Mössbauer spectroscopy,<br>magnetisation and μ+SR. Journal of Magnetism and Magnetic Materials, 1996, 164, 305-318. | 2.3 | 12        |

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Giant-magnetoresistance anomaly associated with a magnetization process in UFe4Al8. Physical Review B, 1996, 53, R480-R483.                                           | 3.2 | 31        |
| 128 | A single-crystal magnetization and neutron scattering investigation of the magnetic structure of.<br>Journal of Physics Condensed Matter, 1996, 8, 11167-11179.       | 1.8 | 13        |
| 129 | Structural and magnetic properties of UFe M12 â^' (M = Al, Mo and Si) intermetallic compounds. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 1419-1420. | 2.3 | 8         |
| 130 | Magnetic properties of UFe10Si2 single crystal. Journal of Alloys and Compounds, 1995, 230, 35-41.                                                                    | 5.5 | 14        |
| 131 | Structural and physical properties of UFe10Mo2. Journal of Alloys and Compounds, 1995, 218, 183-189.                                                                  | 5.5 | 10        |
| 132 | The irreversibility line of the superconducting compound HgBa2Ca3Cu4O10+δ. Physica C:<br>Superconductivity and Its Applications, 1994, 235-240, 2731-2732.            | 1.2 | 7         |
| 133 | Catching the Sugars: Electrochemical Aptasensors for the Detection of Cancer-Related Glycosylation Changes in Prostate-Specific Antigen. , 0, , .                     |     | 1         |