Emma Barroso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360522/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palmitic and Oleic Acid: The Yin and Yang of Fatty Acids in Type 2 Diabetes Mellitus. Trends in Endocrinology and Metabolism, 2018, 29, 178-190.	7.1	365
2	An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy. International Journal of Cardiology, 2013, 168, 3160-3172.	1.7	238
3	Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2013, 56, 1372-1382.	6.3	173
4	Targeting endoplasmic reticulum stress in insulin resistance. Trends in Endocrinology and Metabolism, 2015, 26, 438-448.	7.1	172
5	Early alterations in energy metabolism in the hippocampus of APPswe/PS1dE9 mouse model of Alzheimer's disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 1556-1566.	3.8	161
6	The PPARβ/δ Activator GW501516 Prevents the Down-Regulation of AMPK Caused by a High-Fat Diet in Liver and Amplifies the PGC-1α-Lipin 1-PPARα Pathway Leading to Increased Fatty Acid Oxidation. Endocrinology, 2011, 152, 1848-1859.	2.8	136
7	High-fat diet-induced deregulation of hippocampal insulin signaling and mitochondrial homeostasis deficiences contribute to Alzheimer disease pathology in rodents. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1687-1699.	3.8	134
8	PPARβ/δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2014, 57, 2126-2135.	6.3	83
9	Activation of Peroxisome Proliferator-Activated Receptor-δ by GW501516 Prevents Fatty Acid-Induced Nuclear Factor-I⁰B Activation and Insulin Resistance in Skeletal Muscle Cells. Endocrinology, 2010, 151, 1560-1569.	2.8	80
10	Hepatic regulation of VLDL receptor by PPARβ/δ and FGF21 modulates non-alcoholic fatty liver disease. Molecular Metabolism, 2018, 8, 117-131.	6.5	77
11	PPARβ/δ: A Key Therapeutic Target in Metabolic Disorders. International Journal of Molecular Sciences, 2018, 19, 913.	4.1	66
12	The peroxisome proliferator-activated receptor β/Ĩ´ (PPARβ/Ĩ´) agonist GW501516 prevents TNF-α-induced NF-ή activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology, 2011, 81, 534-543.	4.4	61
13	The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia, 2012, 55, 743-751.	6.3	59
14	Atorvastatin prevents carbohydrate response element binding protein activation in the fructose-fed rat by activating protein kinase A. Hepatology, 2009, 49, 106-115.	7.3	58
15	PPARβ/δ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. International Journal of Cardiology, 2014, 174, 110-118.	1.7	58
16	TNF-α inhibits PPARβ∫δ activity and SIRT1 expression through NF-κB in human adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 1177-1185.	2.4	45
17	Carnitine palmitoyltransferase-1 up-regulation by PPAR-β/δ prevents lipid-induced endothelial dysfunction. Clinical Science, 2015, 129, 823-837.	4.3	42
18	PPARβ/Î′ and lipid metabolism in the heart. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1569-1578.	2.4	39

Emma Barroso

#	Article	IF	CITATIONS
19	Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1241-1248.	3.8	37
20	Targeting PPARβ/δ for the treatment of type 2 diabetes mellitus. Expert Opinion on Therapeutic Targets, 2012, 16, 209-223.	3.4	36
21	miR-146a targets <i>c-Fos</i> expression in human cardiac cells. DMM Disease Models and Mechanisms, 2015, 8, 1081-91.	2.4	35
22	Heme-Regulated eIF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβ/δ Deficiency. Diabetes, 2016, 65, 3185-3199.	0.6	31
23	VLDL and apolipoprotein CIII induce ER stress and inflammation and attenuate insulin signalling via Toll-like receptor 2 in mouse skeletal muscle cells. Diabetologia, 2017, 60, 2262-2273.	6.3	29
24	Resveratrol induces nuclear factor-l̂ºB activity in human cardiac cells. International Journal of Cardiology, 2013, 167, 2507-2516.	1.7	28
25	Peroxisome Proliferator-Activated Receptor Down-Regulation Is Associated With Enhanced Ceramide Levels in Age-Associated Cardiac Hypertrophy. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 1326-1336.	3.6	26
26	Metabolic Alterations and Increased Liver mTOR Expression Precede the Development of Autoimmune Disease in a Murine Model of Lupus Erythematosus. PLoS ONE, 2012, 7, e51118.	2.5	26
27	The BACE1 product sAPPβ induces ER stress and inflammation and impairs insulin signaling. Metabolism: Clinical and Experimental, 2018, 85, 59-75.	3.4	26
28	The Role of Peroxisome Proliferator-Activated Receptor β/δ on the Inflammatory Basis of Metabolic Disease. PPAR Research, 2010, 2010, 1-11.	2.4	22
29	PPARβ/δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1049-1058.	3.8	21
30	State of the Art on Toxicological Mechanisms of Metal and Metal Oxide Nanoparticles and Strategies to Reduce Toxicological Risks. Toxics, 2021, 9, 195.	3.7	11
31	Small heterodimer partner (SHP) contributes to insulin resistance in cardiomyocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 541-551.	2.4	10