Baiqi Shao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360391/publications.pdf

Version: 2024-02-01

186265 243625 2,074 66 28 44 h-index citations g-index papers 66 66 66 1928 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Prevailing Strategies to Tune Emission Color of Lanthanideâ€Activated Phosphors for WLED Applications. Advanced Optical Materials, 2019, 7, 1900319.	7.3	174
2	Sr ₃ GdNa(PO ₄) ₃ F:Eu ²⁺ ,Mn ²⁺ : a potential color tunable phosphor for white LEDs. Journal of Materials Chemistry C, 2014, 2, 90-97.	5.5	130
3	Crystal Structure and Luminescence Properties of Ca ₈ Mg ₃ Al ₂ Si ₇ O ₂₈ :Eu ²⁺ for WLEDs. Advanced Optical Materials, 2014, 2, 183-188.	7.3	120
4	Carbonâ€Tailored Semimetal MoP as an Efficient Hydrogen Evolution Electrocatalyst in Both Alkaline and Acid Media. Advanced Energy Materials, 2018, 8, 1801258.	19.5	111
5	Noneâ€rareâ€earth activated Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ :Bi ³⁺ ,Mn ⁴⁺ phosphor involving dual luminescent centers for temperature sensing. Journal of the American Ceramic Society, 2019, 102, 7436-7447.	3.8	70
6	Site Occupation and Luminescence of Novel Orange-Red Ca ₃ M ₂ Ge ₃ O ₁₂ :Mn ²⁺ ,Mn ⁴⁺ (M) Tj	j 6.T Qq0 0	്ന gBT /Ove
7	Photoluminescence and temperature sensing of lanthanide Eu3+ and transition metal Mn4+ dual-doped antimoniate phosphor through site-beneficial occupation. Ceramics International, 2020, 46, 22164-22170.	4.8	66
8	Enhancing Luminescence and Controlling the Mn Valence State of Gd ₃ Ga _{5â€"i'< sv4 i>â€"î'< sub>Al_{<i>x</i>ê°'î'< sv4 i>â€"<i>y</i>e°'i'>ye°'i''>ye°'i''>ye°'i''>ye°'i''>ye°'i'''>ye°'i'''>ye°'i'''>ye°'i''''e°'i'''e°'i''''e°'i}}	Mn 8.0	62
9	Generation of orange and green emissions in Ca ₂ GdZr ₂ (AlO ₄) ₃ :Ce ³⁺ , Mn ²⁺ , Tb ³⁺ garnets via energy transfer with Mn ²⁺ and Tb ³⁺ as acceptors. Journal of Materials Chemistry C. 2015. 3. 2334-2340.	5.5	58
10	Adjustable photoluminescence of Bi3+ and Eu3+ in solid solution constructed by isostructural end components through composition and excitation-driven strategy. Chemical Engineering Journal, 2021, 421, 127735.	12.7	55
11	Designing of UCNPs@Bi@SiO ₂ Hybrid Theranostic Nanoplatforms for Simultaneous Multimodal Imaging and Photothermal Therapy. ACS Applied Materials & Interfaces, 2019, 11, 394-402.	8.0	50
12	Luminescence and temperature sensing abilities of zincate phosphors co-doped bismuth Bi3+ and lanthanide Eu3+/Sm3+. Materials Research Bulletin, 2020, 129, 110869.	5.2	49
13	Luminescence properties and energy transfer of novel Bi ³⁺ and Mn ²⁺ -co-activated Y ₃ Ga ₅ O ₁₂ single-component white light-emitting phosphor. Journal of Materials Chemistry C, 2020, 8, 12231-12239.	5. 5	43
14	Biocompatible and pHâ€Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie - International Edition, 2020, 59, 9365-9369.	13.8	41
15	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie - International Edition, 2020, 59, 21481-21487.	13.8	39
16	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie - International Edition, 2018, 57, 6878-6882.	13.8	38
17	Optical thermometric properties in Tb3+ and Eu3+-coactivated dual-emissive fluorophosphate phosphors. Optics and Laser Technology, 2020, 123, 105938.	4.6	38
18	Structure and photoluminescence properties of novel Ca2NaSiO4F:Re (Re = Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs. Journal of Materials Chemistry C, 2014, 2, 4304-4311.	5 . 5	37

#	Article	IF	CITATIONS
19	Novel NIR LaGaO ₃ :Cr ³⁺ ,Ln ³⁺ (Ln = Yb, Nd, Er) phosphors <i>via</i> energy transfer for C–Si-based solar cells. Dalton Transactions, 2019, 48, 11460-11468.	3.3	36
20	Efficient sensitization of Mn2+ emission by Eu2+ in Ca12Al14O33Cl2 host under UV excitation. RSC Advances, 2013, 3, 16034.	3.6	35
21	Enhancing Photoluminescence Performance of SrSi _{O<}}}	<u>0</u> q1 1 0.78	343] 4 rgBT
22	YF ₃ :Eu ³⁺ Micro-Single Crystals: Fine Morphological Tuning and Luminescence Properties. Crystal Growth and Design, 2013, 13, 3582-3587.	3.0	34
23	Emission Enhancement and Color Tuning for GdVO ₄ :Ln ³⁺ (Ln = Dy, Eu) by Surface Modification at Single Wavelength Excitation. Inorganic Chemistry, 2017, 56, 282-291.	4.0	33
24	Synthesis and luminescent properties of uniform monodisperse YBO3:Eu3+/Tb3+ microspheres. CrystEngComm, 2014, 16, 5543.	2.6	32
25	Novel Twoâ€Step Topotactic Transformation Synthetic Route Towards Monodisperse LnOF:Re, ³⁺ (Ln = Y, Pr–Lu) Nanocrystals with Down/Upconversion Luminescence Properties. Advanced Optical Materials, 2015, 3, 583-592.	7.3	32
26	An intense NIR emission from Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ :Mn ⁴⁺ ,Yb ³⁺ via energy transfer for solar spectral converters. Dalton Transactions, 2016, 45, 466-468.	3.3	32
27	Phase-Tunable Synthesis of Monodisperse YPO ₄ :Ln ³⁺ (Ln = Ce, Eu, Tb) Micro/Nanocrystals via Topotactic Transformation Route with Multicolor Luminescence Properties. Inorganic Chemistry, 2017, 56, 6114-6121.	4.0	32
28	UCNP–Bi ₂ Se ₃ Upconverting Nanohybrid for Upconversion Luminescence and CT Imaging and Photothermal Therapy. Chemistry - A European Journal, 2020, 26, 1127-1135.	3.3	31
29	Topotactic Transformation Route to Monodisperse \hat{l}^2 -NaYF ₄ :Ln ³⁺ Microcrystals with Luminescence Properties. Inorganic Chemistry, 2016, 55, 1912-1919.	4.0	28
30	One-pot synthesis of Ln ³⁺ -doped porous BiF ₃ @PAA nanospheres for temperature sensing and pH-responsive drug delivery guided by CT imaging. Nanoscale, 2020, 12, 695-702.	5.6	28
31	Monodisperse YVO4:Eu3+ submicrocrystals: controlled synthesis and luminescence properties. CrystEngComm, 2013, 15, 5776.	2.6	27
32	A novel synthetic route towards monodisperse \hat{l}^2 -NaYF ₄ :Ln ³⁺ micro/nanocrystals from layered rare-earth hydroxides at ultra low temperature. Chemical Communications, 2014, 50, 12706-12709.	4.1	25
33	Synthesis, luminescence and application of novel europium, cerium and terbium-doped apatite phosphors. CrystEngComm, 2019, 21, 6226-6237.	2.6	24
34	Luminous tuning in Eu3+/Mn4+ co-doped double perovskite structure by designing the site-occupancy strategy for solid-state lighting and optical temperature sensing. Materials Research Bulletin, 2022, 149, 111704.	5.2	22
35	Novel synthesis and luminescence properties of t-LaVO ₄ :Eu ³⁺ micro cube. CrystEngComm, 2014, 16, 152-158.	2.6	21
36	A two-step synthetic route to GdOF:Ln ³⁺ nanocrystals with multicolor luminescence properties. Dalton Transactions, 2016, 45, 2485-2491.	3.3	21

#	Article	IF	CITATIONS
37	Engineered Anisotropic Fluids of Rareâ€Earth Nanomaterials. Angewandte Chemie - International Edition, 2020, 59, 18213-18217.	13.8	20
38	Preparation of zero-thermal-quenching tunable emission bismuth-containing phosphors through the topochemical design of ligand configuration. Inorganic Chemistry Frontiers, 2021, 8, 4072-4085.	6.0	20
39	Color tuning and energy transfer investigation in Na2Ca4Mg2Si4O15:Eu2+, Mn2+ phosphor and its potential application for UV-excited UV-WLEDs. RSC Advances, 2014, 4, 7588.	3.6	19
40	Syntheses, crystal structures and photoluminescence properties of Ca ₉ Y(PO ₄) ₅ (SiO ₄)F _{1.5} O _{0.25} :Ln<\$(Ln ³⁺ = Eu ³⁺) phosphors for near-UV white LEDs. RSC Advances, 2016, 6, 92371-92377.	sup > 3+ <td>sup.> 18</td>	sup.> 18
41	Constructing a Model for Tuning the Thermal Quenching Properties of Bismuth-Doped Phosphors by Energy-Gap Modulation. Journal of Physical Chemistry C, 2021, 125, 20717-20726.	3.1	15
42	A library of thermotropic liquid crystals of inorganic nanoparticles and extraordinary performances based on their collective ordering. Nano Today, 2021, 38, 101115.	11.9	14
43	Thermal Quenching Mechanism of Metal–Metal Charge Transfer State Transition Luminescence Based on Double-Band-Gap Modulation. Inorganic Chemistry, 2022, 61, 9823-9831.	4.0	14
44	Two-step ion-exchange synthetic strategy for obtaining monodisperse NaYF ₄ :Ln ³⁺ nanostructures with multicolor luminescence properties. Journal of Materials Chemistry C, 2015, 3, 1091-1098.	5.5	13
45	Facile Synthesis of Lanthanide (Ce, Eu, Tb, Ce/Tb, Yb/Er, Yb/Ho, and Yb/Tm)â€Doped LnF ₃ and LnOF Porous Subâ€Microspheres with Multicolor Emissions. Chemistry - an Asian Journal, 2017, 12, 3046-3052.	3.3	13
46	Facile large-scale synthesis of monodisperse REF ₃ (RE = Y, Ce, Nd, Sm-Lu) nano/microcrystals and luminescence properties. Journal of Materials Chemistry C, 2014, 2, 7666.	5.5	12
47	A colorimetric optical thermometry of host-sensitized Pr ³⁺ -doped niobate phosphors based on electronic-rich-site strategy. Dalton Transactions, 2021, 50, 7026-7040.	3.3	12
48	Photoluminescence and optical temperature measurement of Mn4+/Er3+ co-activated double perovskite phosphor through site-advantageous occupation. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 259, 119797.	3.9	12
49	A novel tunable Na2Ba6(Si2O7)(SiO4)2:Ce3+,Mn2+ phosphor with excellent thermal stability for white light emitting diodes. RSC Advances, 2014, 4, 14074-14080.	3.6	11
50	A novel topotactic transformation route towards monodispersed YOF:Ln ³⁺ (Ln = Eu, Tb,) Tj ETQq0 0 9208-9215.	0 rgBT /C 5.5	Overlock 10
51	Photoluminescence and ratiometric fluorescence temperature sensing abilities of zincate phosphors. Journal of Luminescence, 2020, 228, 117600.	3.1	11
52	Synthesis, Structure, and Photoluminescence Properties of Novel KBaSc ₂ (PO ₄) ₃ :Ce ³⁺ /Eu ²⁺ /Tb ³⁺ Phosphors for Whiteâ€Lightâ€Emitting Diodes. ChemPhysChem, 2015, 16, 2663-2669.	2.1	10
53	Genetically Engineered Supercharged Polypeptide Fluids: Fast and Persistent Selfâ€Ordering Induced by Touch. Angewandte Chemie, 2018, 130, 6994-6998.	2.0	8
54	Anisotropic Protein Organofibers Encoded With Extraordinary Mechanical Behavior for Cellular Mechanobiology Applications. Angewandte Chemie, 2020, 132, 21665-21671.	2.0	8

#	Article	IF	CITATIONS
55	NIR-triggered upconversion nanoparticles@thermo-sensitive liposome hybrid theranostic nanoplatform for controlled drug delivery. RSC Advances, 2021, 11, 29065-29072.	3 . 6	8
56	Cr3+/Yb3+/Nd3+-doped Ba2LaGa11O20 broadband NIR phosphors for NIR pc-LED and c-Si solar cells. Optical Materials, 2022, 127, 112290.	3.6	7
57	Facile hydrothermal synthesis and luminescent properties of Eu-doped CaF ₂ –YF ₃ alkaline-earth ternary fluoride microspheres. RSC Advances, 2014, 4, 35750.	3.6	5
58	A structural topotactical transformation synthetic strategy for Y2O2S:Ln3+ micro/nanocrystals with multicolor emissions. Journal of Materials Chemistry C, 2020, 8, 1440-1447.	5 . 5	5
59	Engineered Anisotropic Fluids of Rareâ€Earth Nanomaterials. Angewandte Chemie, 2020, 132, 18370-18374.	2.0	5
60	Biocompatible and pHâ€Responsive Colloidal Surfactants with Tunable Shape for Controlled Interfacial Curvature. Angewandte Chemie, 2020, 132, 9451-9455.	2.0	5
61	Crystal structures, tunable emission and energy transfer of a novel GdAl ₁₂ O ₁₈ N:Eu ²⁺ ,Tb ³⁺ oxynitride phosphor. New Journal of Chemistry, 2016, 40, 2637-2643.	2.8	4
62	Surfactant-free aqueous synthesis of novel Ba ₃ 6d ₂ F ₁₂ :Ln ³⁺ nanocrystals with luminescence properties. CrystEngComm, 2018, 20, 7301-7307.	2.6	4
63	A novel synthesis of YVO4:Ln3+ (Ln = Eu, Sm, and Dy) porous/hollow submicro-ellipsoids and their luminescence properties. CrystEngComm, 2020, 22, 3340-3346.	2.6	4
64	Tysonite type Gd1â^'yCayF3â^'y solid solution: hydrothermal synthesis and luminescence properties. CrystEngComm, 2013, 15, 9930.	2.6	3
65	A solid-solution modulation strategy in trivalent bismuth-doped gallate phosphors for single substrate tunable emission. Dalton Transactions, 2021, 50, 12592-12606.	3.3	3
66	Enhanced thermostability of Eu3+ ions photoluminescence by multi-level electron traps with various temperature responses. Materials Today Chemistry, 2022, 24, 100881.	3.5	1