Yu Tsao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/936021/yu-tsao-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

2,236 170 25 41 h-index g-index citations papers 3,269 5.36 3.3 222 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
170	Predicting the Travel Distance of Patients to Access Healthcare Using Deep Neural Networks <i>IEEE Journal of Translational Engineering in Health and Medicine</i> , 2022 , 10, 4900411	3	O
169	CITISEN: A Deep Learning-Based Speech Signal-Processing Mobile Application. <i>IEEE Access</i> , 2022 , 1-1	3.5	1
168	Improved Lite Audio-Visual Speech Enhancement. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2022 , 30, 1345-1359	3.6	O
167	Continuous Speech for Improved Learning Pathological Voice Disorders <i>IEEE Open Journal of Engineering in Medicine and Biology</i> , 2022 , 3, 25-33	5.9	1
166	SVSNet: An End-to-End Speaker Voice Similarity Assessment Model. <i>IEEE Signal Processing Letters</i> , 2022 , 29, 767-771	3.2	1
165	Detection of Glottic Neoplasm Based on Voice Signals Using Deep Neural Networks 2022 , 6, 1-4		
164	Neural correlates of individual differences in predicting ambiguous sounds comprehension level <i>NeuroImage</i> , 2022 , 119012	7.9	
163	SEOFP-NET: Compression and Acceleration of Deep Neural Networks for Speech Enhancement Using Sign-Exponent-Only Floating-Points. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2021 , 1-1	3.6	O
162	Coupling a Generative Model With a Discriminative Learning Framework for Speaker Verification. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2021 , 29, 3631-3641	3.6	
161	. IEEE Transactions on Multimedia, 2021 , 23, 365-377	6.6	15
160	Improving the Intelligibility of Speech for Simulated Electric and Acoustic Stimulation Using Fully Convolutional Neural Networks. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2021 , 29, 184-195	4.8	6
159	Bone-Conducted Speech Enhancement Using Hierarchical Extreme Learning Machine. <i>Lecture Notes in Electrical Engineering</i> , 2021 , 153-162	0.2	1
158	Domain-Adaptive Fall Detection Using Deep Adversarial Training. <i>IEEE Transactions on Neural Systems and Rehabilitation Engineering</i> , 2021 , 29, 1243-1251	4.8	O
157	Sensing ecosystem dynamics via audio source separation: A case study of marine soundscapes off northeastern Taiwan. <i>PLoS Computational Biology</i> , 2021 , 17, e1008698	5	5
156	Ensemble and Multimodal Learning for Pathological Voice Classification 2021 , 5, 1-4		2
155	Self-Supervised Denoising Autoencoder with Linear Regression Decoder for Speech Enhancement 2020 ,		4
154	Overall survival prediction of non-small cell lung cancer by integrating microarray and clinical data with deep learning. <i>Scientific Reports</i> , 2020 , 10, 4679	4.9	26

153	Forecasting Air Quality in Taiwan by Using Machine Learning. Scientific Reports, 2020, 10, 4153	4.9	21
152	Source separation in ecoacoustics: a roadmap towards versatile soundscape information retrieval. <i>Remote Sensing in Ecology and Conservation</i> , 2020 , 6, 236-247	5.3	19
151	Multichannel Speech Enhancement by Raw Waveform-Mapping Using Fully Convolutional Networks. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2020 , 28, 1888-1900	3.6	9
150	Subspace-Based Representation and Learning for Phonotactic Spoken Language Recognition. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2020 , 28, 3065-3079	3.6	1
149	ASVspoof 2019: A large-scale public database of synthesized, converted and replayed speech. <i>Computer Speech and Language</i> , 2020 , 64, 101114	2.8	32
148	Learning With Learned Loss Function: Speech Enhancement With Quality-Net to Improve Perceptual Evaluation of Speech Quality. <i>IEEE Signal Processing Letters</i> , 2020 , 27, 26-30	3.2	15
147	Ensemble Hierarchical Extreme Learning Machine for Speech Dereverberation. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2020 , 12, 744-758	3	5
146	Time-Domain Multi-Modal Bone/Air Conducted Speech Enhancement. <i>IEEE Signal Processing Letters</i> , 2020 , 27, 1035-1039	3.2	7
145	Atypical Frequency Sweep Processing in Chinese Children With Reading Difficulties: Evidence From Magnetoencephalography. <i>Frontiers in Psychology</i> , 2020 , 11, 1649	3.4	0
144	Blind Monaural Source Separation on Heart and Lung Sounds Based on Periodic-Coded Deep Autoencoder. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2020 , 24, 3203-3214	7.2	2
143	. IEEE/ACM Transactions on Audio Speech and Language Processing, 2020 , 28, 2756-2769	3.6	4
142	A Study of Joint Effect on Denoising Techniques and Visual Cues to Improve Speech Intelligibility in Cochlear Implant Simulation. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2020 , 1-1	3	3
141	The IPIN 2019 Indoor Localisation Competition Description and Results. <i>IEEE Access</i> , 2020 , 8, 206674-20	16 7. ‡8	15
140	Automatic recognition of murmurs of ventricular septal defect using convolutional recurrent neural networks with temporal attentive pooling. <i>Scientific Reports</i> , 2020 , 10, 21797	4.9	5
139	Multimodal Deep Learning Framework for Image Popularity Prediction on Social Media. <i>IEEE Transactions on Cognitive and Developmental Systems</i> , 2020 , 1-1	3	5
138	. IEEE Signal Processing Letters, 2020 , 27, 2149-2153	3.2	13
137	Unsupervised Representation Disentanglement Using Cross Domain Features and Adversarial Learning in Variational Autoencoder Based Voice Conversion. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2020 , 4, 468-479	4.1	7
136	. IEEE Access, 2019 , 7, 43286-43297	3.5	3

135	Auditory identification of frequency-modulated sweeps and reading difficulties in Chinese. <i>Research in Developmental Disabilities</i> , 2019 , 86, 53-61	2.7	5
134	Noise Reduction in ECG Signals Using Fully Convolutional Denoising Autoencoders. <i>IEEE Access</i> , 2019 , 7, 60806-60813	3.5	81
133	Computation-Performance Optimization of Convolutional Neural Networks With Redundant Filter Removal. <i>IEEE Transactions on Circuits and Systems I: Regular Papers</i> , 2019 , 66, 1908-1921	3.9	5
132	New Templated Ostwald Ripening Process of Mesostructured FeOOH for Third-Harmonic Generation Bioimaging. <i>Small</i> , 2019 , 15, e1805086	11	7
131	Garment Detectives: Discovering Clothes and Its Genre in Consumer Photos 2019,		8
130	Combining acoustic signals and medical records to improve pathological voice classification. <i>APSIPA Transactions on Signal and Information Processing</i> , 2019 , 8,	4.4	5
129	Reinforcement Learning Based Speech Enhancement for Robust Speech Recognition 2019,		5
128	Increasing Compactness of Deep Learning Based Speech Enhancement Models With Parameter Pruning and Quantization Techniques. <i>IEEE Signal Processing Letters</i> , 2019 , 26, 1887-1891	3.2	4
127	Evaluating Indoor Positioning Systems in a Shopping Mall: The Lessons Learned From the IPIN 2018 Competition. <i>IEEE Access</i> , 2019 , 7, 148594-148628	3.5	35
126	A Mobile Phone-Based Approach for Hearing Screening of School-Age Children: Cross-Sectional Validation Study. <i>JMIR MHealth and UHealth</i> , 2019 , 7, e12033	5.5	10
125	Subjective Feedback-based Neural Network Pruning for Speech Enhancement 2019,		2
124	Investigation of Neural Network Approaches for Unified Spectral and Prosodic Feature Enhancement 2019 ,		1
123	Refined WaveNet Vocoder for Variational Autoencoder Based Voice Conversion 2019,		6
122	Robust S1 and S2 heart sound recognition based on spectral restoration and multi-style training. Biomedical Signal Processing and Control, 2019 , 49, 173-180	4.9	5
121	Detection of Pathological Voice Using Cepstrum Vectors: A Deep Learning Approach. <i>Journal of Voice</i> , 2019 , 33, 634-641	1.9	62
120	Toward Automating Oral Presentation Scoring During Principal Certification Program Using Audio-Video Low-Level Behavior Profiles. <i>IEEE Transactions on Affective Computing</i> , 2019 , 10, 552-567	5.7	1
119	. IEEE Systems Journal, 2018 , 12, 20-29	4.3	13
118	Suppression by Selecting Wavelets for Feature Compression in Distributed Speech Recognition. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2018 , 26, 564-579	3.6	11

(2018-2018)

117	Deep Learning-Based Noise Reduction Approach to Improve Speech Intelligibility for Cochlear Implant Recipients. <i>Ear and Hearing</i> , 2018 , 39, 795-809	3.4	33
116	Adaptive Noise Cancellation Using Deep Cerebellar Model Articulation Controller. <i>IEEE Access</i> , 2018 , 6, 37395-37402	3.5	12
115	End-to-End Waveform Utterance Enhancement for Direct Evaluation Metrics Optimization by Fully Convolutional Neural Networks. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2018 , 26, 1570-1584	3.6	105
114	Comparison of passive acoustic soniferous fish monitoring with supervised and unsupervised approaches. <i>Journal of the Acoustical Society of America</i> , 2018 , 143, EL278	2.2	21
113	Audio-Visual Speech Enhancement Using Multimodal Deep Convolutional Neural Networks. <i>IEEE Transactions on Emerging Topics in Computational Intelligence</i> , 2018 , 2, 117-128	4.1	79
112	Bone-conducted speech enhancement using deep denoising autoencoder. <i>Speech Communication</i> , 2018 , 104, 106-112	2.8	16
111	Off-Line Evaluation of Mobile-Centric Indoor Positioning Systems: The Experiences from the 2017 IPIN Competition. <i>Sensors</i> , 2018 , 18,	3.8	37
110	Coral Reef Soundscape to Measure the Species Distribution and Biodiversity 2018 ,		1
109	Listening to the Deep: Exploring Marine Soundscape Variability by Information Retrieval Techniques 2018 ,		5
108	Voice Conversion Based on Cross-Domain Features Using Variational Auto Encoders 2018,		7
107	Speech Enhancement Based on Reducing the Detail Portion of Speech Spectrograms in Modulation Domain via DiscreteWavelet Transform 2018 ,		3
106	A Study on Speech Enhancement Using Exponent-Only Floating Point Quantized Neural Network (EOFP-QNN) 2018 ,		4
105	2018,		1
104	Deep Denoising Autoencoder Based Post Filtering for Speech Enhancement 2018,		1
103	Improving the performance of hearing aids in noisy environments based on deep learning technology. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2018 , 2018, 404-408	0.9	1
102	Architecture Design of Convolutional Neural Networks for Face Detection on an FPGA Platform 2018 ,		2
101	Congruent Visual Stimulation Facilitates Auditory Frequency Change Detection: An ERP Study. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2018, 2018, 2446-2449	0.9	
100	Enhancement and Analysis of Conversational Speech: JSALT 2017 2018 ,		3

99	2018,		4
98	A Novel LSTM-Based Speech Preprocessor for Speaker Diarization in Realistic Mismatch Conditions 2018 ,		10
97	Demographic and Symptomatic Features of Voice Disorders and Their Potential Application in Classification Using Machine Learning Algorithms. <i>Folia Phoniatrica Et Logopaedica</i> , 2018 , 70, 174-182	1.5	11
96	S1 and S2 Heart Sound Recognition Using Deep Neural Networks. <i>IEEE Transactions on Biomedical Engineering</i> , 2017 , 64, 372-380	5	90
95	Multi-style learning with denoising autoencoders for acoustic modeling in the internet of things (IoT). <i>Computer Speech and Language</i> , 2017 , 46, 481-495	2.8	10
94	Regularization of neural network model with distance metric learning for i-vector based spoken language identification. <i>Computer Speech and Language</i> , 2017 , 44, 48-60	2.8	6
93	. IEEE Access, 2017 , 5, 10339-10351	3.5	17
92	Joint Dictionary Learning-Based Non-Negative Matrix Factorization for Voice Conversion to Improve Speech Intelligibility After Oral Surgery. <i>IEEE Transactions on Biomedical Engineering</i> , 2017 , 64, 2584-2594	5	23
91	Personalizing Recurrent-Neural-Network-Based Language Model by Social Network. <i>IEEE/ACM Transactions on Audio Speech and Language Processing</i> , 2017 , 25, 519-530	3.6	12
90	Raw waveform-based speech enhancement by fully convolutional networks 2017,		77
89	Track-Clustering Error Evaluation for Track-Based Multi-camera Tracking System Employing Human Re-identification 2017 ,		4
88	Effects of noise suppression and envelope dynamic range compression on the intelligibility of vocoded sentences for a tonal language. <i>Journal of the Acoustical Society of America</i> , 2017 , 142, 1157	2.2	5
87	Learning Transportation Modes From Smartphone Sensors Based on Deep Neural Network. <i>IEEE Sensors Journal</i> , 2017 , 17, 6111-6118	4	64
86	Experimental Study on Extreme Learning Machine Applications for Speech Enhancement. <i>IEEE Access</i> , 2017 , 5, 25542-25554	3.5	27
85	Discriminative autoencoders for speaker verification 2017,		3
84	Improving biodiversity assessment via unsupervised separation of biological sounds from long-duration recordings. <i>Scientific Reports</i> , 2017 , 7, 4547	4.9	32
83	A Deep Denoising Autoencoder Approach to Improving the Intelligibility of Vocoded Speech in Cochlear Implant Simulation. <i>IEEE Transactions on Biomedical Engineering</i> , 2017 , 64, 1568-1578	5	48
82	Object-based on-line video summarization for internet of video things 2017 ,		2

81	Computing biodiversity change via a soundscape monitoring network 2017 ,		7
80	2017,		47
79	A deep learning based noise reduction approach to improve speech intelligibility for cochlear implant recipients in the presence of competing speech noise 2017 ,		4
78	Adaptive Dynamic Range Compression for Improving Envelope-Based Speech Perception: Implications for Cochlear Implants 2017 , 191-214		1
77	Dictionary update for NMF-based voice conversion using an encoder-decoder network 2016 ,		2
76	Modeling speech intelligibility with recovered envelope from temporal fine structure stimulus. <i>Speech Communication</i> , 2016 , 81, 120-128	2.8	1
75	Generalized maximum a posteriori spectral amplitude estimation for speech enhancement. <i>Speech Communication</i> , 2016 , 76, 112-126	2.8	25
74	Image Retrieval Using Color-Aware Tag on Progressive Image Search and Recommendation System. <i>Lecture Notes in Computer Science</i> , 2016 , 162-173	0.9	
73	Adaptive subspace-constrained diagonal loading 2016 ,		1
72	Maximum Entropy Learning with Deep Belief Networks. <i>Entropy</i> , 2016 , 18, 251	2.8	5
71	Transportation Modes Classification Using Sensors on Smartphones. Sensors, 2016, 16,	3.8	35
70	Wavelet Speech Enhancement Based on Nonnegative Matrix Factorization. <i>IEEE Signal Processing Letters</i> , 2016 , 23, 1101-1105	3.2	17
69	A pseudo-task design in multi-task learning deep neural network for speaker recognition 2016,		2
68	Voice conversion from non-parallel corpora using variational auto-encoder 2016 ,		64
67	Assessing the perceptual contributions of level-dependent segments to sentence intelligibility. Journal of the Acoustical Society of America, 2016 , 140, 3745	2.2	8
66	A linear regression model with dynamic pulse transit time features for noninvasive blood pressure prediction 2016 ,		6
65	Audio-visual speech enhancement using deep neural networks 2016 ,		10
64	Improving the Performance of Noise Reduction in Hearing Aids Based on the Genetic Algorithm. <i>IFMBE Proceedings</i> , 2016 , 209-214	0.2	

63	Auditory Perception, Suprasegmental Speech Processing, and Vocabulary Development in Chinese Preschoolers. <i>Perceptual and Motor Skills</i> , 2016 , 123, 365-82	2.2	8
62	Channel State Reconstruction Using Multilevel Discrete Wavelet Transform for Improved Fingerprinting-Based Indoor Localization. <i>IEEE Sensors Journal</i> , 2016 , 16, 7784-7791	4	26
61	Acoustic Echo Cancellation Using a Vector-Space-Based Adaptive Filtering Algorithm. <i>IEEE Signal Processing Letters</i> , 2015 , 22, 351-355	3.2	7
60	A probabilistic interpretation for artificial neural network-based voice conversion 2015 ,		4
59	Temporal information in tone recognition 2015,		1
58	Rapid Converging M-Max Partial Update Least Mean Square Algorithms with New Variable Step-Size Methods. <i>IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences</i> , 2015 , E98.A, 2650-2657	0.4	1
57	Improving denoising auto-encoder based speech enhancement with the speech parameter generation algorithm 2015 ,		5
56	Robust Voice Activity Detection Algorithm Based on Feature of Frequency Modulation of Harmonics and Its DSP Implementation. <i>IEICE Transactions on Information and Systems</i> , 2015 , E98.D, 180	18-181	7 ¹⁴
55	A discriminative post-filter for speech enhancement in hearing aids 2015,		2
54	A deep neural network based approach to mandarin consonant/vowel separation 2015,		2
53	A new frequency lowering technique for Mandarin-speaking hearing aid users 2015,		1
52	Compensating for Orientation Mismatch in Robust Wi-Fi Localization Using Histogram Equalization. <i>IEEE Transactions on Vehicular Technology</i> , 2015 , 64, 5210-5220	6.8	14
51	Ensemble environment modeling using affine transform group. Speech Communication, 2015, 68, 55-68	2.8	1
50	Effects of Adaptation Rate and Noise Suppression on the Intelligibility of Compressed-Envelope Based Speech. <i>PLoS ONE</i> , 2015 , 10, e0133519	3.7	10
49	. IEEE/ACM Transactions on Audio Speech and Language Processing, 2014 , 22, 403-416	3.6	4
48	Incorporating local information of the acoustic environments to MAP-based feature compensation and acoustic model adaptation. <i>Computer Speech and Language</i> , 2014 , 28, 709-726	2.8	4
47	Variable Selection Linear Regression for Robust Speech Recognition. <i>IEICE Transactions on Information and Systems</i> , 2014 , E97.D, 1477-1487	0.6	1
46	Acoustic feature conversion using a polynomial based feature transferring algorithm 2014,		1

(2008-2014)

45	A Transfer Probabilistic Collective Factorization Model to Handle Sparse Data in Collaborative Filtering 2014 ,	12
44	2014,	1
43	Robust anchorperson detection based on audio streams using a hybrid I-vector and DNN system 2014 ,	2
42	2014,	14
41	Sparse representation based on a bag of spectral exemplars for acoustic event detection 2014,	16
40	2013,	7
39	Evaluation of generalized maximum a posteriori spectral amplitude (GMAPA) speech enhancement algorithm in hearing aids 2013 ,	6
38	2013,	6
37	Incorporating global variance in the training phase of GMM-based voice conversion 2013,	8
36	Exploring mutual information for GMM-based spectral conversion 2012,	4
35	A study on cepstral sub-band normalization for robust ASR 2012 ,	4
34	A linear projection approach to environment modeling for robust speech recognition 2012 ,	2
33	Feature normalization and selection for robust speaker state recognition 2011,	3
32	An acoustic segment model approach to incorporating temporal information into speaker modeling for text-independent speaker recognition 2010 ,	6
31	Ensemble speaker and speaking environment modeling approach with advanced online estimation process 2009 ,	5
30	MAP estimation of online mapping parameters in ensemble speaker and speaking environment modeling 2009 ,	1
29	. IEEE Transactions on Audio Speech and Language Processing, 2009 , 17, 1025-1037	19
28	A programmable analog radial-basis-function based classifier. <i>Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing</i> , 2008 ,	1

27	Two extensions to ensemble speaker and speaking environment modeling for robust automatic speech recognition 2007 ,		3
26	Segmental eigenvoice with delicate eigenspace for improved speaker adaptation. <i>IEEE Transactions on Speech and Audio Processing</i> , 2005 , 13, 399-411		13
25	A recommendation mechanism for contextualized mobile advertising. <i>Expert Systems With Applications</i> , 2003 , 24, 399-414	.8	90
24	A study on knowledge source integration for candidate rescoring in automatic speech recognition		1
23	Lite Audio-Visual Speech Enhancement		4
22	Incorporating Broad Phonetic Information for Speech Enhancement		2
21	Speech enhancement based on deep denoising autoencoder		113
20	SNR-Aware Convolutional Neural Network Modeling for Speech Enhancement		63
19	Locally Linear Embedding for Exemplar-Based Spectral Conversion		12
18	Pair-Wise Distance Metric Learning of Neural Network Model for Spoken Language Identification		2
17	Voice Conversion from Unaligned Corpora Using Variational Autoencoding Wasserstein Generative Adversarial Networks		71
16	Wavelet Speech Enhancement Based on Robust Principal Component Analysis		2
15	Temporal Attentive Pooling for Acoustic Event Detection		4
14	Quality-Net: An End-to-End Non-intrusive Speech Quality Assessment Model Based on BLSTM		25
13	Investigation of F0 Conditioning and Fully Convolutional Networks in Variational Autoencoder Based Voice Conversion		3
12	MOSNet: Deep Learning-Based Objective Assessment for Voice Conversion		14
11	Speaker-Aware Deep Denoising Autoencoder with Embedded Speaker Identity for Speech Enhancement		5
10	A study on separation between acoustic models and its applications		3

LIST OF PUBLICATIONS

9	Exemplar-Based Spectral Detail Compensation for Voice Conversion	2
8	Noise Adaptive Speech Enhancement Using Domain Adversarial Training	4
7	Generative Adversarial Networks for Unpaired Voice Transformation on Impaired Speech	5
6	Ensemble modeling of denoising autoencoder for speech spectrum restoration	4
5	Improving the ensemble speaker and speaking environment modeling approach by enhancing the precision of the online estimation process	2
4	A study of mutual information for GMM-based spectral conversion	4
3	An investigation of spectral restoration algorithms for deep neural networks based noise robust speech recognition	4
2	Ensemble of machine learning and acoustic segment model techniques for speech emotion and autism spectrum disorders recognition	7
1	Recurrent neural network based language model personalization by social network crowdsourcing	26