Kamin J Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9360077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Collaborative Initiative to Establish Genomic Biomarkers for Assessing Tumorigenic Potential to Reduce Reliance on Conventional Rodent Carcinogenicity Studies. Toxicological Sciences, 2022, 188, 4-16.	1.4	7
2	A rat subchronic study transcriptional point of departure estimates a carcinogenicity study apical point of departure. Food and Chemical Toxicology, 2021, 147, 111869.	1.8	9
3	Bridging Sex-Specific Differences in the CAR-Mediated Hepatocarcinogenesis of Nitrapyrin Using Molecular and Apical Endpoints. Frontiers in Toxicology, 2021, 3, 766196.	1.6	1
4	Identification of early liver toxicity gene biomarkers using comparative supervised machine learning. Scientific Reports, 2020, 10, 19128.	1.6	13
5	Short-term toxicogenomics as an alternative approach to chronic in vivo studies for derivation of points of departure: A case study in the rat with a triazole fungicide. Regulatory Toxicology and Pharmacology, 2020, 113, 104655.	1.3	20
6	A Rat Liver Transcriptomic Point of Departure Predicts a Prospective Liver or Non-liver Apical Point of Departure. Toxicological Sciences, 2020, 176, 86-102.	1.4	32
7	Dioxin male rat reproductive toxicity mode of action and relative potency of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran characterized by fetal pituitary and testis transcriptome profiling. Reproductive Toxicology, 2020, 93, 146-162.	1.3	14
8	A Novel Open Access Web Portal for Integrating Mechanistic and Toxicogenomic Study Results. Toxicological Sciences, 2019, 170, 296-309.	1.4	13
9	Polybrominated diphenyl ether (PBDE) neurotoxicity: a systematic review and meta-analysis of animal evidence. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 269-289.	2.9	49
10	Systematic reviews and meta-analyses of human and animal evidence of prenatal diethylhexyl phthalate exposure and changes in male anogenital distance. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 207-226.	2.9	43
11	Dose-response analysis of epigenetic, metabolic, and apical endpoints after short-term exposure to experimental hepatotoxicants. Food and Chemical Toxicology, 2017, 109, 690-702.	1.8	21
12	Applying 'omics technologies in chemicals risk assessment: Report of an ECETOC workshop. Regulatory Toxicology and Pharmacology, 2017, 91, S3-S13.	1.3	102
13	The interface of epigenetics and toxicology in product safety assessment. Current Opinion in Toxicology, 2017, 6, 87-92.	2.6	11
14	A Developmental and Reproductive Toxicology Program for Chemical Registration. Methods in Pharmacology and Toxicology, 2016, , 117-183.	0.1	0
15	Comparative Response of Rat and Rabbit Conceptuses In Vitro to Inhibitors of Histiotrophic Nutrition. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 2015, 104, 1-10.	1.4	5
16	Testicular histopathology associated with disruption of the Sertoli cell cytoskeleton. Spermatogenesis, 2014, 4, e979106.	0.8	65
17	ldentification of gene expression changes in postnatal rat foreskin after in utero anti-androgen exposure. Reproductive Toxicology, 2014, 47, 42-50.	1.3	1
18	Transcriptome Analysis of the Dihydrotestosterone-Exposed Fetal Rat Gubernaculum Identifies Common Androgen and Insulin-Like 3 Targets1. Biology of Reproduction, 2013, 89, 143.	1.2	15

Kamin J Johnson

#	Article	IF	CITATIONS
19	Human Fetal Testis Xenografts Are Resistant to Phthalate-Induced Endocrine Disruption. Environmental Health Perspectives, 2012, 120, 1137-1143.	2.8	89
20	Of Mice and Men (and Rats): Phthalate-Induced Fetal Testis Endocrine Disruption Is Species-Dependent. Toxicological Sciences, 2012, 129, 235-248.	1.4	127
21	A Transcriptome-Wide Screen for mRNAs Enriched in Fetal Leydig Cells: CRHR1 Agonism Stimulates Rat and Mouse Fetal Testis Steroidogenesis. PLoS ONE, 2012, 7, e47359.	1.1	34
22	Uncovering Gene Regulatory Networks During Mouse Fetal Germ Cell Development. Biology of Reproduction, 2011, 84, 790-800.	1.2	29
23	Species-Specific Dibutyl Phthalate Fetal Testis Endocrine Disruption Correlates with Inhibition of SREBP2-Dependent Gene Expression Pathways. Toxicological Sciences, 2011, 120, 460-474.	1.4	56
24	Insulin-Like 3 Exposure of the Fetal Rat Gubernaculum Modulates Expression of Genes Involved in Neural Pathways1. Biology of Reproduction, 2010, 83, 774-782.	1.2	36
25	The orl Rat with Inherited Cryptorchidism Has Increased Susceptibility to the Testicular Effects of In Utero Dibutyl Phthalate Exposure. Toxicological Sciences, 2008, 105, 360-367.	1.4	24
26	Fetal Mouse Phthalate Exposure Shows that Gonocyte Multinucleation is Not Associated with Decreased Testicular Testosterone. Toxicological Sciences, 2007, 97, 491-503.	1.4	110
27	Mapping Gene Expression Changes in the Fetal Rat Testis Following Acute Dibutyl Phthalate Exposure Defines a Complex Temporal Cascade of Responding Cell Types1. Biology of Reproduction, 2007, 77, 978-989.	1.2	31
28	Mono-(2-ethylhexyl) Phthalate Rapidly Increases Celsr2 Protein Phosphorylation in HeLa Cells via Protein Kinase C and Casein Kinase 1. Toxicological Sciences, 2006, 91, 255-264.	1.4	12
29	Testicular Gene Expression Profiling following Prepubertal Rat Mono-(2-ethylhexyl) Phthalate Exposure Suggests a Common Initial Genetic Response at Fetal and Prepubertal Ages. Toxicological Sciences, 2006, 93, 369-381.	1.4	50
30	Hybrid GPCR/Cadherin (Celsr) Proteins in Rat Testis Are Expressed With Cell Type Specificity and Exhibit Differential Sertoli Cell-Germ Cell Adhesion Activity. Journal of Andrology, 2005, 26, 529-538.	2.0	28
31	Sertoli Cell Toxicants. , 2005, , 345-382.		32
32	Protocadherin α3 Acts at Sites Distinct from Classic Cadherins in Rat Testis and Sperm1. Biology of Reproduction, 2004, 70, 303-312.	1.2	15
33	2,5-HEXANEDIONE-INDUCEDTESTICULARINJURY. Annual Review of Pharmacology and Toxicology, 2003, 43, 125-147.	4.2	62
34	Dynamic Testicular Adhesion Junctions Are Immunologically Unique. I. Localization of p120 Catenin in Rat Testis1. Biology of Reproduction, 2002, 66, 983-991.	1.2	41
35	Dynamic Testicular Adhesion Junctions Are Immunologically Unique. II. Localization of Classic Cadherins in Rat Testis1. Biology of Reproduction, 2002, 66, 992-1000.	1.2	83
36	Plasma fibronectin supports neuronal survival and reduces brain injury following transient focal cerebral ischemia but is not essential for skin-wound healing and hemostasis Nature Medicine, 2001, 7, 324-330.	15.2	311

Kamin J Johnson

#	Article	IF	CITATIONS
37	Multiple Cadherin Superfamily Members with Unique Expression Profiles Are Produced in Rat Testis1. Endocrinology, 2000, 141, 675-683.	1.4	60
38	Role of Sertoli Cells in Injury-Associated Testicular Germ Cell Apoptosis. Proceedings of the Society for Experimental Biology and Medicine, 2000, 225, 105-115.	2.0	85
39	Role of Sertoli Cells in Injuryâ€Associated Testicular Germ Cell Apoptosis. Proceedings of the Society for Experimental Biology and Medicine, 2000, 225, 105-115.	2.0	23
40	Multiple Cadherin Superfamily Members with Unique Expression Profiles Are Produced in Rat Testis. Endocrinology, 2000, 141, 675-683.	1.4	22
41	The Compact Conformation of Fibronectin Is Determined by Intramolecular Ionic Interactions. Journal of Biological Chemistry, 1999, 274, 15473-15479.	1.6	160
42	Colchicine Disrupts the Cytoskeleton of Rat Testis Seminiferous Epithelium in a Stage-Dependent Manner1. Biology of Reproduction, 1993, 48, 143-153.	1.2	73
43	2,5-Hexanedione exposure alters the rat sertoli cell cytoskeleton *11. Microtubules and seminiferous tubule fluid secretion. Toxicology and Applied Pharmacology, 1991, 111, 432-442.	1.3	49
44	A <scp>microRNA</scp> or messenger <scp>RNA</scp> point of departure estimates an apical endpoint point of departure in a rat developmental toxicity model. Birth Defects Research, 0, , .	0.8	1