
Sang-wook Yeh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359441/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	El Niño in a changing climate. Nature, 2009, 461, 511-514.	27.8	1,325
2	Understanding ENSO Diversity. Bulletin of the American Meteorological Society, 2015, 96, 921-938.	3.3	745
3	El Niño–Southern Oscillation complexity. Nature, 2018, 559, 535-545.	27.8	702
4	ENSO and greenhouse warming. Nature Climate Change, 2015, 5, 849-859.	18.8	596
5	ENSO Atmospheric Teleconnections and Their Response to Greenhouse Gas Forcing. Reviews of Geophysics, 2018, 56, 185-206.	23.0	330
6	Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22512-22517.	7.1	221
7	Climate Phenomena and their Relevance for Future Regional Climate Change. , 2014, , 1217-1308.		202
8	Changing El Niño–Southern Oscillation in a warming climate. Nature Reviews Earth & Environment, 2021, 2, 628-644.	29.7	197
9	Combined effect of El Niño-Southern Oscillation and Pacific Decadal Oscillation on the East Asian winter monsoon. Climate Dynamics, 2014, 42, 957-971.	3.8	131
10	Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 69-81.	2.3	124
11	The role of mean state on changes in El Niño's flavor. Climate Dynamics, 2011, 37, 1205-1215.	3.8	103
12	Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	101
13	Observational evidences of Walker circulation change over the last 30Âyears contrasting with GCM results. Climate Dynamics, 2013, 40, 1721-1732.	3.8	94
14	The unique 2009–2010 El Niño event: A fast phase transition of warm pool El Niño to La Niña. Geophysical Research Letters, 2011, 38, .	4.0	93
15	On the Relationship between the North Pacific Climate Variability and the Central Pacific El Niño. Journal of Climate, 2015, 28, 663-677.	3.2	92
16	Recent warming in the Yellow/East China Sea during winter and the associated atmospheric circulation. Continental Shelf Research, 2010, 30, 1428-1434.	1.8	88
17	Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Climate Dynamics, 2012, 38, 2631-2644.	3.8	85
18	Influence of the Pacific Decadal Oscillation on the Relationship between El Niño and the Northeast Asian Summer Monsoon. Journal of Climate, 2010, 23, 4525-4537.	3.2	82

#	Article	IF	CITATIONS
19	The North Pacific Climate Transitions of the Winters of 1976/77 and 1988/89. Journal of Climate, 2011, 24, 1170-1183.	3.2	78
20	Changes in the Tropical Pacific SST Trend from CMIP3 to CMIP5 and Its Implication of ENSO. Journal of Climate, 2012, 25, 7764-7771.	3.2	77
21	Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. Journal of Geophysical Research, 2004, 109, .	3.3	71
22	A further study of the tropical Indian Ocean asymmetric mode in boreal spring. Journal of Geophysical Research, 2010, 115, .	3.3	70
23	ENSO and East Asian winter monsoon relationship modulation associated with the anomalous northwest Pacific anticyclone. Climate Dynamics, 2017, 49, 1157-1179.	3.8	66
24	Response of ENSO amplitude to global warming in CESM large ensemble: uncertainty due to internal variability. Climate Dynamics, 2018, 50, 4019-4035.	3.8	60
25	The Record-Breaking Heat Wave in 2016 over South Korea and Its Physical Mechanism. Monthly Weather Review, 2018, 146, 1463-1474.	1.4	59
26	Two Types of Heat Wave in Korea Associated With Atmospheric Circulation Pattern. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7498-7511.	3.3	58
27	Spring persistence, transition, and resurgence of El Niño. Geophysical Research Letters, 2014, 41, 8578-8585.	4.0	57
28	Pacific decadal variability and decadal ENSO amplitude modulation. Geophysical Research Letters, 2005, 32, .	4.0	56
29	On the Fragile Relationship Between El Niño and California Rainfall. Geophysical Research Letters, 2018, 45, 907-915.	4.0	56
30	Decadal change in the relationship between east Asian–western North Pacific summer monsoons and ENSO in the midâ€1990s. Geophysical Research Letters, 2008, 35, .	4.0	52
31	The Influence of ENSO on Decadal Variations in the Relationship between the East Asian and Western North Pacific Summer Monsoons. Journal of Climate, 2008, 21, 3165-3179.	3.2	49
32	ENSO Amplitude Changes due to Climate Change Projections in Different Coupled Models. Journal of Climate, 2007, 20, 203-217.	3.2	48
33	Statistical relationship between two types of El Niño events and climate variation over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2010, 46, 467-474.	2.3	48
34	Tropical influence on the North Pacific Oscillation drives winter extremes in North America. Nature Climate Change, 2019, 9, 413-418.	18.8	48
35	Impact of Poleward Moisture Transport from the North Pacific on the Acceleration of Sea Ice Loss in the Arctic since 2002. Journal of Climate, 2017, 30, 6757-6769.	3.2	45
36	Seasonal change in anomalous WNPSH associated with the strong East Asian summer monsoon. Geophysical Research Letters, 2006, 33, .	4.0	44

#	Article	IF	CITATIONS
37	Favorable connections between seasonal footprinting mechanism and El Niño. Climate Dynamics, 2013, 40, 1169-1181.	3.8	42
38	Changes in the relationship in the SST variability between the tropical Pacific and the North Pacific across the 1998/1999 regime shift. Geophysical Research Letters, 2015, 42, 7171-7178.	4.0	42
39	An Eastward Shift of the North Pacific Oscillation After the Midâ€1990s and Its Relationship With ENSO. Geophysical Research Letters, 2018, 45, 6654-6660.	4.0	42
40	Variability of chlorophyll associated with El Niño–Southern Oscillation and its possible biological feedback in the equatorial Pacific. Journal of Geophysical Research, 2011, 116, .	3.3	41
41	Evaluation of performance of CMIP5 models in simulating the North Pacific Oscillation and El Niño Modoki. Climate Dynamics, 2019, 52, 1383-1394.	3.8	41
42	ENSO-Like and ENSO-Induced Tropical Pacific Decadal Variability in CGCMs. Journal of Climate, 2013, 26, 1485-1501.	3.2	34
43	Dynamics and characteristics of dry and moist heatwaves over East Asia. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	34
44	Tracking the complete revolution of surface westerlies over Northern Hemisphere using radionuclides emitted from Fukushima. Science of the Total Environment, 2012, 438, 80-85.	8.0	32
45	Critical Role of Northern Off-Equatorial Sea Surface Temperature Forcing Associated with Central Pacific El Niño in More Frequent Tropical Cyclone Movements toward East Asia. Journal of Climate, 2013, 26, 2534-2545.	3.2	32
46	Distinct impact of tropical SSTs on summer North Pacific high and western North Pacific subtropical high. Journal of Geophysical Research D: Atmospheres, 2013, 118, 4107-4116.	3.3	32
47	Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985–2010. Geophysical Research Letters, 2016, 43, 1364-1372.	4.0	32
48	Recent surface cooling in the Yellow and East China Seas and the associated North Pacific climate regime shift. Continental Shelf Research, 2018, 156, 43-54.	1.8	32
49	Effect of recent Atlantic warming in strengthening Atlantic–Pacific teleconnection on interannual timescale via enhanced connection with the pacific meridional mode. Climate Dynamics, 2019, 53, 371-387.	3.8	32
50	Hysteresis of the intertropical convergence zone to CO2 forcing. Nature Climate Change, 2022, 12, 47-53.	18.8	32
51	The impact of internal atmospheric variability on the North Pacific SST variability. Climate Dynamics, 2004, 22, 721-732.	3.8	31
52	Rectification of ENSO Variability by Interdecadal Changes in the Equatorial Background Mean State in a CGCM Simulation. Journal of Climate, 2007, 20, 2002-2021.	3.2	31
53	Diagnosing Physical Mechanisms Leading to Pure Heat Waves Versus Pure Tropical Nights Over the Korean Peninsula. Journal of Geophysical Research D: Atmospheres, 2018, 123, 7149-7160.	3.3	31
54	Effects of the low-frequency zonal wind variation on the high frequency atmospheric variability over the tropics. Climate Dynamics, 2009, 33, 495-507.	3.8	30

#	Article	IF	CITATIONS
55	Reinterpreting the thermocline feedback in the western-central equatorial Pacific and its relationship with the ENSO modulation. Climate Dynamics, 2013, 41, 819-830.	3.8	29
56	Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Climate Dynamics, 2015, 44, 1979-1992.	3.8	29
57	Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophysical Research Letters, 2004, 31, .	4.0	28
58	Two Types of Strong Northeast Asian Summer Monsoon. Journal of Climate, 2009, 22, 4406-4417.	3.2	28
59	Decadal change in relationship between western North Pacific tropical cyclone frequency and the tropical Pacific SST. Meteorology and Atmospheric Physics, 2010, 106, 179-189.	2.0	28
60	Regulation of atmospheric circulation controlling the tropical Pacific precipitation change in response to CO2 increases. Nature Communications, 2019, 10, 1108.	12.8	28
61	Korea Institute of Ocean Science and Technology Earth System Model and Its Simulation Characteristics. Ocean Science Journal, 2021, 56, 18-45.	1.3	28
62	Dissimilar effects of two El Niño types on PM2.5 concentrations in East Asia. Environmental Pollution, 2018, 242, 1395-1403.	7.5	27
63	Changes in the linear relationship of ENSO–PDO under the global warming. International Journal of Climatology, 2013, 33, 1121-1128.	3.5	26
64	Analysis of characteristics in the sea surface temperature variability in the East/Japan Sea. Progress in Oceanography, 2010, 85, 213-223.	3.2	25
65	A possible mechanism for the North Pacific regime shift in winter of 1998/1999. Geophysical Research Letters, 2013, 40, 4380-4385.	4.0	25
66	Statistical predictability of wintertime PM2.5 concentrations over East Asia using simple linear regression. Science of the Total Environment, 2021, 776, 146059.	8.0	25
67	Recent climate variation in the Bering and Chukchi Seas and its linkages to large-scale circulation in the Pacific. Climate Dynamics, 2014, 42, 2423-2437.	3.8	24
68	Threshold of the volcanic forcing that leads the El Niño-like warming in the last millennium: results from the ERIK simulation. Climate Dynamics, 2016, 46, 3725-3736.	3.8	24
69	Radioactive impact in South Korea from the damaged nuclear reactors in Fukushima: evidence of long and short range transport. Journal of Radiological Protection, 2012, 32, 397-411.	1.1	23
70	Asymmetric impact of Central Pacific ENSO on the reduction of tropical cyclone genesis frequency over the western North Pacific since the late 1990s. Climate Dynamics, 2020, 54, 661-673.	3.8	23
71	Future Southern Ocean warming linked to projected ENSO variability. Nature Climate Change, 2022, 12, 649-654.	18.8	23
72	The central Pacific as the export region of the El Niño-Southern Oscillation sea surface temperature anomaly to Antarctic sea ice. Journal of Geophysical Research, 2011, 116, .	3.3	22

#	Article	IF	CITATIONS
73	Revisited relationship between tropical and North Pacific sea surface temperature variations. Geophysical Research Letters, 2012, 39, .	4.0	22
74	Projections of faster onset and slower decay of El Niño in the 21st century. Nature Communications, 2022, 13, 1915.	12.8	22
75	The Decadal ENSO Variability in a Hybrid Coupled Model. Journal of Climate, 2004, 17, 1225-1238.	3.2	21
76	Low-Frequency Variability of Temperature in the Vicinity of the Equatorial Pacific Thermocline in SODA: Role of Equatorial Wave Dynamics and ENSO Asymmetry. Journal of Climate, 2009, 22, 5783-5795.	3.2	21
77	The effects of <scp>ENSO</scp> under negative <scp>AO</scp> phase on spring dust activity over northern China: an observational investigation. International Journal of Climatology, 2015, 35, 935-947.	3.5	21
78	Global Cooling Hiatus Driven by an AMOC Overshoot in a Carbon Dioxide Removal Scenario. Earth's Future, 2021, 9, e2021EF002165.	6.3	21
79	The North Pacific Oscillation-ENSO and internal atmospheric variability. Geophysical Research Letters, 2004, 31, n/a-n/a.	4.0	20
80	Ocean chlorophyll response to two types of El Niño events in an oceanâ€biogeochemical coupled model. Journal of Geophysical Research: Oceans, 2014, 119, 933-952.	2.6	20
81	Fourth CLIVAR Workshop on the Evaluation of ENSO Processes in Climate Models: ENSO in a Changing Climate. Bulletin of the American Meteorological Society, 2016, 97, 817-820.	3.3	20
82	ENSO nonlinearity in a warming climate. Climate Dynamics, 2011, 37, 2045-2065.	3.8	19
83	Change in strong Eastern Pacific El Niño events dynamics in the warming climate. Climate Dynamics, 2020, 54, 901-918.	3.8	19
84	Seasonal variation of the upper ocean responding to surface heating in the <scp>N</scp> orth <scp>P</scp> acific. Journal of Geophysical Research: Oceans, 2015, 120, 5631-5647.	2.6	18
85	Origin of decadal El Niño–Southern Oscillation–like variability in a coupled general circulation model. Journal of Geophysical Research, 2006, 111, .	3.3	17
86	Statistical evidence for the natural variation of the central Pacific El Niño. Journal of Geophysical Research, 2012, 117, .	3.3	17
87	Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theoretical and Applied Climatology, 2013, 112, 431-445.	2.8	17
88	Changes in the variability of the North Pacific sea surface temperature caused by direct sulfate aerosol forcing in China in a coupled general circulation model. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1261-1270.	3.3	17
89	Role of the western tropical Pacific in the North Pacific regime shift in the winter of 1998/1999. Journal of Geophysical Research: Oceans, 2014, 119, 6161-6170.	2.6	17
90	Revisiting the iris effect of tropical cirrus clouds with TRMM and Aâ€Train satellite data. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5917-5931.	3.3	17

#	Article	IF	CITATIONS
91	ENSO amplitude changes in climate change commitment to atmospheric CO2doubling. Geophysical Research Letters, 2006, 33, .	4.0	16
92	Decadal changes in the relationship between the tropical Pacific and the North Pacific. Journal of Geophysical Research, 2012, 117, .	3.3	16
93	The status and prospect of seasonal climate prediction of climate over Korea and East Asia: A review. Asia-Pacific Journal of Atmospheric Sciences, 2017, 53, 149-173.	2.3	16
94	Monthly climate variation over Korea in relation to the two types of ENSO evolution. International Journal of Climatology, 2018, 38, 811-824.	3.5	16
95	Arctic Sea Ice Loss as a Potential Trigger for Central Pacific El Niño Events. Geophysical Research Letters, 2020, 47, e2020GL087028.	4.0	16
96	Asymmetrical response of summer rainfall in East Asia to CO2 forcing. Science Bulletin, 2022, 67, 213-222.	9.0	16
97	Contrasting response of hydrological cycle over land and ocean to a changing CO2 pathway. Npj Climate and Atmospheric Science, 2021, 4, .	6.8	16
98	Atmospheric impact on the northwestern Pacific under a global warming scenario. Geophysical Research Letters, 2012, 39, .	4.0	15
99	Covariability of western tropical Pacific-North Pacific atmospheric circulation during summer. Scientific Reports, 2015, 5, 16980.	3.3	15
100	Intensity changes of Indian Ocean dipole mode in a carbon dioxide removal scenario. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	15
101	A Temporal Multiscale Analysis of the Waters off the East Coast of South Korea over the Past Four Decades. Terrestrial, Atmospheric and Oceanic Sciences, 2014, 25, 415.	0.6	14
102	Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Niño. Ocean and Polar Research, 2009, 31, 51-61.	0.3	14
103	Decadal North Pacific sea surface temperature variability and the associated global climate anomalies in a coupled general circulation model. Journal of Geophysical Research, 2004, 109, .	3.3	13
104	Interâ€El Niño variability in CMIP5 models: Model deficiencies and future changes. Journal of Geophysical Research D: Atmospheres, 2016, 121, 3894-3906.	3.3	13
105	Landâ€sea thermal contrast determines the trend of Walker circulation simulated in atmospheric general circulation models. Geophysical Research Letters, 2017, 44, 5854-5862.	4.0	13
106	On the relationship between the interannual and decadal SST variability in the North Pacific and tropical Pacific Ocean. Journal of Geophysical Research, 2003, 108, .	3.3	12
107	Changes in mixed layer depth under climate change projections in two CGCMs. Climate Dynamics, 2009, 33, 199-213.	3.8	12
108	Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Climate Dynamics, 2010, 35, 355-369.	3.8	12

7

#	Article	IF	CITATIONS
109	Processes that influence the mixed layer deepening during winter in the North Pacific. Journal of Geophysical Research, 2010, 115, .	3.3	12
110	Sensitivity of the northeast Asian summer monsoon to tropical sea surface temperatures. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	12
111	How Does Pacific Decadal Oscillation Affect Tropical Cyclone Activity Over Far East Asia?. Geophysical Research Letters, 2021, 48, .	4.0	12
112	The characteristic oscillation induced by coupled processes between oceanic vertical modes and atmospheric modes in the tropical Pacific. Geophysical Research Letters, 2001, 28, 2847-2850.	4.0	11
113	Impacts of aerosols on regional meteorology due to Siberian forest fires in May 2003. Atmospheric Environment, 2011, 45, 1407-1412.	4.1	11
114	Understanding the responses of sea surface temperature to the two different types of El Niño in the western North Pacific. Progress in Oceanography, 2012, 105, 81-89.	3.2	11
115	Sensitivity of summer precipitation to tropical sea surface temperatures over East Asia in the GRIMs GMP. Geophysical Research Letters, 2013, 40, 1824-1831.	4.0	11
116	Impact of the Indian Ocean on ENSO variability in a hybrid coupled model. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 445-457.	2.7	10
117	Effect of anthropogenic sulphate aerosol in China on the drought in the western-to-central US. Scientific Reports, 2015, 5, 14305.	3.3	10
118	Distinct mechanisms of Korean surface temperature variability during early and late summer. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6137-6151.	3.3	10
119	Attribution of the 2015 record high sea surface temperatures over the central equatorial Pacific and tropical Indian Ocean. Environmental Research Letters, 2017, 12, 044024.	5.2	10
120	The role of low-frequency variation in the manifestation of warming trend and ENSO amplitude. Climate Dynamics, 2017, 49, 1197-1213.	3.8	10
121	Changes in the role of Pacific decadal oscillation on sea ice extent variability across the mid-1990s. Scientific Reports, 2020, 10, 17564.	3.3	10
122	Nonlinear impact of the Arctic Oscillation on extratropical surface air temperature. Journal of Geophysical Research, 2012, 117, .	3.3	9
123	Ocean mixed layer processes in the Pacific Decadal Oscillation in coupled general circulation models. Climate Dynamics, 2013, 41, 1407-1417.	3.8	9
124	A possible explanation on the changes in the spatial structure of ENSO from CMIP3 to CMIP5. Geophysical Research Letters, 2014, 41, 140-145.	4.0	9
125	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	9
126	Evidence of the observed change in the atmosphere–ocean interactions over the South China Sea during summer in a regional climate model. Meteorology and Atmospheric Physics, 2016, 128, 639-648.	2.0	9

#	Article	IF	CITATIONS
127	Change in Relationship between the East Asian Winter Monsoon and the East Asian Jet Stream during the 1998–99 Regime Shift. Journal of Climate, 2019, 32, 6163-6175.	3.2	9
128	Suppressed CO ₂ Outgassing by an Enhanced Biological Pump in the Eastern Tropical Pacific. Journal of Geophysical Research: Oceans, 2019, 124, 7962-7973.	2.6	9
129	Characteristics of the North Pacific Oscillation in CMIP5 Models in Relation to Atmospheric Mean States. Journal of Climate, 2020, 33, 3809-3825.	3.2	9
130	Local versus nonâ€local atmospheric weather noise and the North Pacific SST variability. Geophysical Research Letters, 2007, 34, .	4.0	8
131	Internal Atmospheric Variability and Interannual-to-Decadal ENSO Variability in a CGCM. Journal of Climate, 2009, 22, 2335-2355.	3.2	8
132	On the relationship between <scp>ENSO</scp> diversity and the <scp>ENSO</scp> atmospheric teleconnection to highâ€latitudes. International Journal of Climatology, 2022, 42, 1303-1325.	3.5	8
133	Interbasin Interactions between the Pacific and Atlantic Oceans Depending on the Phase of Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation. Journal of Climate, 2022, 35, 2883-2894.	3.2	8
134	Increased Indian Ocean-North Atlantic Ocean warming chain under greenhouse warming. Nature Communications, 2022, 13, .	12.8	8
135	Indian Ocean warming as key driver of long-term positive trend of Arctic Oscillation. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	8
136	Special issue "Grand celebration: 50th anniversary of the Korean meteorological society― Asia-Pacific Journal of Atmospheric Sciences, 2014, 50, 1-1.	2.3	7
137	Contributions of Asian pollution and SST forcings on precipitation change in the North Pacific. Atmospheric Research, 2017, 192, 30-37.	4.1	7
138	An Episodic Weakening in the Boreal Spring SST–Precipitation Relationship in the Western Tropical Pacific since the Late 1990s. Journal of Climate, 2019, 32, 3837-3845.	3.2	7
139	A Global/Regional Integrated Model Systemâ€Chemistry Climate Model: 1. Simulation Characteristics. Earth and Space Science, 2019, 6, 2016-2030.	2.6	7
140	Understanding Intermodel Diversity When Simulating the Time of Emergence in CMIP5 Climate Models. Geophysical Research Letters, 2020, 47, e2020GL087923.	4.0	7
141	Distinct impacts of major El Niño events on Arctic temperatures due to differences in eastern tropical Pacific sea surface temperatures. Science Advances, 2022, 8, eabl8278.	10.3	7
142	Study on the changes in the East Asian precipitation in the midâ€1990s using a highâ€resolution global downscaled atmospheric data set. Journal of Geophysical Research D: Atmospheres, 2014, 119, 2279-2293.	3.3	6
143	ENSO-Related Precipitation and Its Statistical Relationship with the Walker Circulation Trend in CMIP5 AMIP Models. Atmosphere, 2016, 7, 19.	2.3	6
144	Impact of Two Distinct Teleconnection Patterns Induced by Western Central Pacific SST Anomalies on Korean Temperature Variability during the Early Boreal Summer. Journal of Climate, 2016, 29, 743-759.	3.2	6

#	Article	IF	CITATIONS
145	Major Driver Leading to Winter SST Variability in the Kuroshio Recirculation Gyre Region and Its Decadal Changes: Refreshening Versus Springâ€Initiated Reemergence Processes. Geophysical Research Letters, 2019, 46, 272-280.	4.0	6
146	La Niña-related tropospheric column ozone enhancement over East Asia. Atmospheric Environment, 2021, 261, 118575.	4.1	6
147	Hemispheric Asymmetry in Future Wave Power Changes: Seasonality and Physical Mechanisms. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017687.	2.6	6
148	Recent weakening linkage between Arctic oscillation and Aleutian low during boreal winter and its impact on surface temperature over Eastern Eurasia. Atmospheric Science Letters, 2022, 23, .	1.9	6
149	Source of low frequency modulation of ENSO amplitude in a CGCM. Climate Dynamics, 2007, 29, 101-111.	3.8	5
150	Changes in the spatial structure of strong and moderate El Niño events under global warming. International Journal of Climatology, 2014, 34, 2834-2840.	3.5	5
151	Reduction of internal climate variability in surface temperature due to seaâ€ice loss since the midâ€⊋1st century. International Journal of Climatology, 2017, 37, 5211-5216.	3.5	5
152	Inter-model diversity of Arctic amplification caused by global warming and its relationship with the Inter-tropical Convergence Zone in CMIP5 climate models. Climate Dynamics, 2017, 48, 3799-3811.	3.8	5
153	Impacts of Pacific SSTs on Atmospheric Circulations Leading to California Winter Precipitation Variability: A Diagnostic Modeling. Atmosphere, 2018, 9, 455.	2.3	5
154	Diversity of ENSOâ€Related Surface Temperature Response in Future Projection in CMIP6 Climate Models: Climate Change Scenario Versus ENSO Intensity. Geophysical Research Letters, 2022, 49, .	4.0	5
155	Roles of Atmosphere Thermodynamic and Ocean Dynamic Processes on the Upward Trend of Summer Marine Heatwaves Occurrence in East Asian Marginal Seas. Frontiers in Marine Science, 2022, 9, .	2.5	5
156	Meteorological responses to Mt. Baekdu volcanic eruption over east asia in an offline global climate-chemistry model: A pilot study. Asia-Pacific Journal of Atmospheric Sciences, 2011, 47, 345-351.	2.3	4
157	The decadal modulation of coupled bred vectors. Geophysical Research Letters, 2012, 39, .	4.0	4
158	Role of the ocean mixed layer processes in the response of the North Pacific winter SST and MLD to global warming in CGCMs. Climate Dynamics, 2012, 38, 1181-1190.	3.8	4
159	Origin of the Tsushima Warm Current in a high resolution ocean circulation model. Journal of Coastal Research, 2013, 165, 2041-2046.	0.3	4
160	Contributions of solar and greenhouse gases forcing during the present warm period. Meteorology and Atmospheric Physics, 2014, 126, 71-79.	2.0	4
161	Multi-model attribution of upper-ocean temperature changes using an isothermal approach. Scientific Reports, 2016, 6, 26926.	3.3	4
162	Underlying mechanisms leading to El Niño-to-La Niña transition are unchanged under global warming. Climate Dynamics, 2019, 52, 1723-1738.	3.8	4

#	Article	IF	CITATIONS
163	Relation between Climate Variability in Korea and Two Types of El Niño, and Their Sensitivity to Definition of Two Types of El Niño. Atmosphere, 2014, 24, 89-99.	0.3	4
164	Contrasting factors on the trends in hot days and warm nights over Northern Hemisphere land during summer. Weather and Climate Extremes, 2021, 34, 100389.	4.1	4
165	Statistical Seasonal Forecasting of Winter and Spring PM2.5 Concentrations Over the Korean Peninsula. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 549-561.	2.3	4
166	The characteristics of signal versus noise sst variability in the north pacific and the tropical pacific ocean. Ocean Science Journal, 2006, 41, 1-10.	1.3	3
167	The Low-Frequency Relationship of the Tropical–North Pacific Sea Surface Temperature Teleconnections. Journal of Climate, 2008, 21, 3416-3432.	3.2	3
168	Regional Arctic Amplification by a Fast Atmospheric Response to Anthropogenic Sulfate Aerosol Forcing in China. Journal of Climate, 2019, 32, 6337-6348.	3.2	3
169	Characteristics of internal variability on summer rainfall in Northeast Asia in a changing climate. Climate Dynamics, 2020, 54, 1179-1195.	3.8	3
170	Nonâ€stationary characteristics of intraseasonal precipitation variability in Northeast Asia during the boreal summer. International Journal of Climatology, 2021, 41, 714-725.	3.5	3
171	Roles of insolation forcing and CO2 forcing on Late Pleistocene seasonal sea surface temperatures. Nature Communications, 2021, 12, 5742.	12.8	3
172	Analysis of Atmosphere-Ocean Interactions over South China Sea and its Relationship with Northeast Asian Precipitation Variability during Summer. Atmosphere, 2013, 23, 283-291.	0.3	3
173	General circulation and global heat transport in a quadrupling CO2 pulse experiment. Scientific Reports, 2022, 12, .	3.3	3
174	Marginal changes in the linear relationship of <scp>ENSOâ€PDO</scp> in the <scp>CMIP5 RCP4</scp> .5 scenario. International Journal of Climatology, 2016, 36, 4667-4678.	3.5	2
175	Weather noise leading to El Niño diversity in an ocean general circulation model. Climate Dynamics, 2019, 52, 7235-7247.	3.8	2
176	The Lagged Effect of Anthropogenic Aerosol on East Asian Precipitation during the Summer Monsoon Season. Atmosphere, 2020, 11, 1356.	2.3	2
177	Dissimilar characteristics associated with the 1976/1977 and 1998/1999 climate regime shifts in the North Pacific. Theoretical and Applied Climatology, 2020, 142, 1463-1470.	2.8	2
178	Role of the eastern subtropical North Pacific Ocean on the El Niño's transition processes. Climate Dynamics, 2021, 56, 1285-1301.	3.8	2
179	Changes in the characteristics of North Pacific Jet as a Conduit for U. S. surface air temperature in boreal winter across the late 1990s. Journal of Climate, 2021, , 1-43.	3.2	2
180	Analysis on the Relationship between the Korean Temperature and the Atmospheric Circulation over the Northern Hemisphere during Winter. Atmosphere, 2012, 22, 187-197.	0.3	2

#	Article	IF	CITATIONS
181	Relationship Between Korean Monthly Temperature During Summer and Eurasian Snow Cover During Spring. Atmosphere, 2017, 27, 55-65.	0.3	2
182	Internal Climate Variability in the Present Climate and the Change in ENSO Amplitude in Future Climate Simulations. Frontiers in Climate, 0, 4, .	2.8	2
183	The role of air-sea interaction over the Indian Ocean in the in-phase transition from the Indian summer monsoon to the Australian boreal winter monsoon. Journal of Geophysical Research, 2011, 116, .	3.3	1
184	The influences of interannual stratification variability and wind stress forcing on ENSO before and after the 1976 climate shift. Theoretical and Applied Climatology, 2012, 107, 623-631.	2.8	1
185	Simple Analysis on the Relationship Between Sea Salt Aerosols and Precipitation in the North Pacific Ocean Using the Global Chemical Transport Model Simulation. Asia-Pacific Journal of Atmospheric Sciences, 2018, 54, 179-186.	2.3	1
186	Understanding Intermodel Diversity of CMIP5 Climate Models in Simulating East Asian Marginal Sea Surface Temperature in the Near Future (2020–2049). Journal of Geophysical Research: Oceans, 2019, 124, 5607-5617.	2.6	1
187	Surface temperature variability in climate models with large and small internal climate variability. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 3004-3016.	2.7	1
188	Impact of the Stratospheric Ozone on the Northern Hemisphere Surface Climate During Boreal Winter. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034958.	3.3	1
189	Human Contribution to the 2014 Record High Sea Surface Temperatures Over the Western Tropical And Northeast Pacific Ocean. Bulletin of the American Meteorological Society, 2015, 96, S100-S104.	3.3	1
190	Effects of the El Niño on Tropospheric Ozone in a Simulation using a Climate-Chemistry Model. Journal of the Korean Earth Science Society, 2013, 34, 662-668.	0.2	1
191	Investigation of Change in Air-Sea CO2Exchange over the East China Sea using Biogeochemical Ocean Modeling. Ocean and Polar Research, 2008, 30, 325-334.	0.3	1
192	Remote impacts of 2009 and 2015 El Niño on oceanic and biological processes in a marginal sea of the Northwestern Pacific. Scientific Reports, 2022, 12, 741.	3.3	1
193	Atmosphere-driven cold SST biases over the western North Pacific in the GloSea5 seasonal forecast system. Climate Dynamics, 2022, 59, 2571-2584.	3.8	1
194	A New Chemistry-Climate Model GRIMs-CCM: Model Evaluation of Interactive Chemistry-Meteorology Simulations. Asia-Pacific Journal of Atmospheric Sciences, 2022, 58, 647-666.	2.3	1
195	Winds shift El Niño flavour. Nature Climate Change, 2018, 8, 766-767.	18.8	0
196	Enhanced climate variability during the last millennium recorded in alkenone sea surface temperatures of the northwest Pacific margin. Global and Planetary Change, 2021, 204, 103558.	3.5	0
197	A Suggestion for Definition of El Niño/La Niña. Atmosphere, 2013, 23, 63-71.	0.3	0
198	A Comparison of Two Vertical-Mixing Schemes on the Simulation of the Mixed Layer Depth and Upper Ocean Temperature in an Ocean General Circulation Model. Ocean and Polar Research, 2013, 35, 249-258.	0.3	0