
Lin Xianbiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359432/publications.pdf Version: 2024-02-01

Ι ΙΝ ΧΙΔΝΒΙΔΟ

#	Article	IF	CITATIONS
1	Effects of marine produced organic matter on the potential estuarine capacity of NOxâ^ removal. Science of the Total Environment, 2022, 812, 151471.	8.0	14
2	Effects of algal-derived organic matter on sediment nitrogen mineralization and immobilization in a eutrophic estuary. Ecological Indicators, 2022, 138, 108813.	6.3	8
3	Saltmarsh sediments with wastewater input emit more carbon greenhouse gases but less N2O than mangrove sediments. Catena, 2022, 213, 106205.	5.0	5
4	Bait input altered microbial community structure and increased greenhouse gases production in coastal wetland sediment. Water Research, 2022, 218, 118520.	11.3	58
5	Sediment Nitrate Dissimilatory Reduction Processes along a Salinity Gradient in an Estuarine and Coastal Wetland, China. Journal of Marine Science and Engineering, 2022, 10, 761.	2.6	2
6	Natural N-bearing nanoparticles in sediments of a shallow bay of the south china: A new N form in N-cycling. Ecological Indicators, 2021, 122, 107281.	6.3	11
7	Shifts in the relative abundance and potential rates of sediment ammonia-oxidizing archaea and bacteria along environmental gradients of an urban river–estuary–adjacent sea continuum. Science of the Total Environment, 2021, 771, 144824.	8.0	10
8	Geochemical and microbial insights into vertical distributions of genetic potential of N-cycling processes in deep-sea sediments. Ecological Indicators, 2021, 125, 107461.	6.3	9
9	Membrane inlet mass spectrometry method (REOX/MIMS) to measure 15N-nitrate in isotope-enrichment experiments. Ecological Indicators, 2021, 126, 107639.	6.3	107
10	Nitrogen cycling processes in sediments of the Pearl River Estuary: Spatial variations, controlling factors, and environmental implications. Catena, 2021, 206, 105545.	5.0	54
11	Sediment nitrate reduction processes in response to environmental gradients along an urban river-estuary-sea continuum. Science of the Total Environment, 2020, 718, 137185.	8.0	32
12	Bacterial Community Shifts Driven by Nitrogen Pollution in River Sediments of a Highly Urbanized City. International Journal of Environmental Research and Public Health, 2019, 16, 3794.	2.6	20
13	Sources, influencing factors and environmental indications of PAH pollution in urban soil columns of Shanghai, China. Ecological Indicators, 2018, 85, 1170-1180.	6.3	33
14	Effects of multiple antibiotics exposure on denitrification process in the Yangtze Estuary sediments. Chemosphere, 2017, 171, 118-125.	8.2	88
15	Salinity-driven shifts in the activity, diversity, and abundance of anammox bacteria of estuarine and coastal wetlands. Physics and Chemistry of the Earth, 2017, 97, 46-53.	2.9	29
16	Soil dissimilatory nitrate reduction processes in the Spartina alterniflora invasion chronosequences of a coastal wetland of southeastern China: Dynamics and environmental implications. Plant and Soil, 2017, 421, 383-399.	3.7	51
17	Nitrogen Losses in Sediments of the East China Sea: Spatiotemporal Variations, Controlling Factors, and Environmental Implications. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2699-2715.	3.0	60
18	Ammonium Production and Removal in the Sediments of Shanghai River Networks: Spatiotemporal Variations, Controlling Factors, and Environmental Implications. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2461-2478.	3.0	30

LIN ΧΙΑΝΒΙΑΟ

#	Article	IF	CITATIONS
19	DNRA in intertidal sediments of the Yangtze Estuary. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 1988-1998.	3.0	62
20	PAHs uptake and translocation in Cinnamomum camphora leaves from Shanghai, China. Science of the Total Environment, 2017, 574, 358-368.	8.0	36
21	Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1632-1645.	3.0	53
22	Nitrogen mineralization and immobilization in sediments of the East China Sea: Spatiotemporal variations and environmental implications. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 2842-2855.	3.0	49
23	Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes. Scientific Reports, 2016, 6, 21338.	3.3	36
24	Community composition and activity of anaerobic ammonium oxidation bacteria in the rhizosphere of salt-marsh grass Spartina alterniflora. Applied Microbiology and Biotechnology, 2016, 100, 8203-8212.	3.6	29
25	Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 451-465.	3.0	79
26	Dissimilatory nitrate reduction processes in sediments of urban river networks: Spatiotemporal variations and environmental implications. Environmental Pollution, 2016, 219, 545-554.	7.5	66
27	Effects of thiamphenicol on nitrate reduction and N2O release in estuarine and coastal sediments. Environmental Pollution, 2016, 214, 265-272.	7.5	48
28	nirS-Encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Applied Microbiology and Biotechnology, 2016, 100, 8573-8582.	3.6	57
29	Gross Nitrogen Mineralization in Surface Sediments of the Yangtze Estuary. PLoS ONE, 2016, 11, e0151930.	2.5	24
30	Dissimilatory nitrate reduction processes and associated contribution to nitrogen removal in sediments of the Yangtze Estuary. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 1521-1531.	3.0	135
31	Anaerobic ammonium oxidation and its contribution to nitrogen removal in China's coastal wetlands. Scientific Reports, 2015, 5, 15621.	3.3	104
32	Diversity, Abundance, and Distribution of nirS-Harboring Denitrifiers in Intertidal Sediments of the Yangtze Estuary. Microbial Ecology, 2015, 70, 30-40.	2.8	57
33	Evidence of Nitrogen Loss from Anaerobic Ammonium Oxidation Coupled with Ferric Iron Reduction in an Intertidal Wetland. Environmental Science & amp; Technology, 2015, 49, 11560-11568.	10.0	170