Yifei Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9359122/publications.pdf Version: 2024-02-01

VIEEL CUO

#	Article	IF	CITATIONS
1	Enhanced tumor accumulation and therapeutic efficacy of liposomal drugs through over-threshold dosing. Journal of Nanobiotechnology, 2022, 20, 137.	9.1	7
2	Photothermal combined with intratumoral injection of annonaceous acetogenin nanoparticles for breast cancer therapy. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112426.	5.0	2
3	Hydrophilic Poly(glutamic acid)-Based Nanodrug Delivery System: Structural Influence and Antitumor Efficacy. Polymers, 2022, 14, 2242.	4.5	8
4	Pterostilbene nanoparticles with small particle size show excellent anti-breast cancer activity in vitro and in vivo. Nanotechnology, 2021, 32, 325102.	2.6	8
5	Honokiol-Based Nanomedicine Decorated with Ethylene Glycols Derivatives Promotes Antitumor Efficacy. Journal of Biomedical Nanotechnology, 2021, 17, 1564-1573.	1.1	4
6	Poly(methacrylate citric acid) with good biosafety as nanoadsorbents of heavy metal ions. Colloids and Surfaces B: Biointerfaces, 2020, 187, 110656.	5.0	3
7	A comparative study on the <i>inÂvitro</i> and <i>inÂvivo</i> antitumor efficacy of icaritin and hydrous icaritin nanorods. Drug Delivery, 2020, 27, 1176-1187.	5.7	9
8	Preparation of high drug-loading celastrol nanosuspensions and their anti-breast cancer activities in vitro and in vivo. Scientific Reports, 2020, 10, 8851.	3.3	28
9	Preparation of hydroxy genkwanin nanosuspensions and their enhanced antitumor efficacy against breast cancer. Drug Delivery, 2020, 27, 816-824.	5.7	16
10	The influence of nanocarrier architectures on antitumor efficacy of docetaxel nanoparticles. RSC Advances, 2020, 10, 11074-11078.	3.6	4
11	Influence of Hydrophobic Chains in Nanocarriers on Antitumor Efficacy of Docetaxel Nanoparticles. Molecular Pharmaceutics, 2020, 17, 1205-1214.	4.6	3
12	Nanoadsorbents preparing from oligoethylene glycol dendron and citric acid: Enhanced adsorption effect for the removal of heavy metal ions. Colloids and Surfaces B: Biointerfaces, 2020, 189, 110876.	5.0	10
13	Soybean lecithin stabilizes disulfiram nanosuspensions with a high drug-loading content: remarkably improved antitumor efficacy. Journal of Nanobiotechnology, 2020, 18, 4.	9.1	14
14	Hydrous icaritin nanorods with excellent stability improves the <i>inÂvitro</i> and <i>inÂvivo</i> activity against breast cancer. Drug Delivery, 2020, 27, 228-237.	5.7	10
15	Nanoadsorbents Based on NIPAM and Citric Acid: Removal Efficacy of Heavy Metal Ions in Different Media. ACS Omega, 2019, 4, 14162-14168.	3.5	12
16	Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids and Surfaces B: Biointerfaces, 2019, 177, 1-10.	5.0	16
17	A comparative study of polydopamine modified and conventional chemical synthesis method in doxorubicin liposomes form the aspect of tumor targeted therapy. International Journal of Pharmaceutics, 2019, 559, 76-85.	5.2	15
18	Polydopamine-based surface modification of paclitaxel nanoparticles for osteosarcoma targeted therapy. Nanotechnology, 2019, 30, 255101.	2.6	31

Yifei Guo

#	Article	IF	CITATIONS
19	Hydroxycamptothecin nanoparticles based on poly/oligo (ethylene glycol): Architecture effects of nanocarriers on antitumor efficacy. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 134, 178-184.	4.3	14
20	Surface modification of doxorubicin-loaded nanoparticles based on polydopamine with pH-sensitive property for tumor targeting therapy. Drug Delivery, 2018, 25, 564-575.	5.7	64
21	Folate-targeting annonaceous acetogenins nanosuspensions: significantly enhanced antitumor efficacy in HeLa tumor-bearing mice. Drug Delivery, 2018, 25, 880-887.	5.7	35
22	Shape of Nanoparticles as a Design Parameter to Improve Docetaxel Antitumor Efficacy. Bioconjugate Chemistry, 2018, 29, 1302-1311.	3.6	34
23	Effect of alkyl chain on cellular uptake and antitumor activity of hydroxycamptothecin nanoparticles based on amphiphilic linear molecules. European Journal of Pharmaceutical Sciences, 2018, 124, 266-272.	4.0	4
24	Amphiphilic Hybrid Dendritic-Linear Molecules as Nanocarriers for Shape-Dependent Antitumor Drug Delivery. Molecular Pharmaceutics, 2018, 15, 2665-2673.	4.6	12
25	Administration of raloxifene hydrochloride nanosuspensions partially attenuates bone loss in ovariectomized mice. RSC Advances, 2018, 8, 23748-23756.	3.6	1
26	The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules, 2018, 23, 2001.	3.8	8
27	Honokiol nanoparticles stabilized by oligoethylene glycols codendrimer: in vitro and in vivo investigations. Journal of Materials Chemistry B, 2017, 5, 697-706.	5.8	12
28	Well-defined podophyllotoxin polyprodrug brushes: preparation via RAFT polymerization and evaluation as drug carriers. Polymer Chemistry, 2017, 8, 901-909.	3.9	13
29	Hydroxycamptothecin Nanorods Prepared by Fluorescently Labeled Oligoethylene Glycols (OEG) Codendrimer: Antitumor Efficacy in Vitro and in Vivo. Bioconjugate Chemistry, 2017, 28, 390-399.	3.6	20
30	Genkwanin nanosuspensions: a novel and potential antitumor drug in breast carcinoma therapy. Drug Delivery, 2017, 24, 1491-1500.	5.7	24
31	Folate-modified Annonaceous acetogenins nanosuspensions and their improved antitumor efficacy. International Journal of Nanomedicine, 2017, Volume 12, 5053-5067.	6.7	23
32	10-Hydroxycamptothecin (HCPT) nanosuspensions stabilized by mPEG ₁₀₀₀ -HCPT conjugate: high stabilizing efficiency and improved antitumor efficacy. International Journal of Nanomedicine, 2017, Volume 12, 3681-3695.	6.7	27
33	A stabilizer-free and organic solvent-free method to prepare 10-hydroxycamptothecin nanocrystals: in vitro and in vivo evaluation. International Journal of Nanomedicine, 2016, 11, 2979.	6.7	27
34	Annonaceous acetogenins (ACGs) nanosuspensions based on a self-assembly stabilizer and the significantly improved anti-tumor efficacy. Colloids and Surfaces B: Biointerfaces, 2016, 145, 319-327.	5.0	37
35	Methotrexate Nanoparticles Prepared with Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Clycols (OEC) Dendrons: Antitumor Efficacy in Vitro and in Vivo. Scientific Reports, 2016, 6, 28983.	3.3	37
36	A series of codendrimers from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendrons as drug carriers: the effect of OEG dendron decoration degree. RSC Advances, 2015, 5, 85547-85555.	3.6	6

Yifei Guo

#	Article	IF	CITATIONS
37	Codendrimer from Polyamidoamine (PAMAM) and Oligoethylene Dendron as a Thermosensitive Drug Carrier. Bioconjugate Chemistry, 2014, 25, 24-31.	3.6	16
38	Honokiol nanosuspensions: Preparation, increased oral bioavailability and dramatically enhanced biodistribution in the cardio-cerebro-vascular system. Colloids and Surfaces B: Biointerfaces, 2014, 116, 114-120.	5.0	45
39	A codendrimer of PAMAM decorated with oligoethylene glycol dendrons: synthesis, self-assembly, and application as a drug carrier. Soft Matter, 2013, 9, 10306.	2.7	6
40	Codendrimer (PAG) from polyamidoamine (PAMAM) and oligoethylene glycols (OEG) dendron: evaluation as drug carrier. Journal of Materials Chemistry B, 2013, 1, 6078.	5.8	10
41	Preparation, characterization, biodistribution and antitumor efficacy of hydroxycamptothecin nanosuspensions. International Journal of Pharmaceutics, 2013, 455, 85-92.	5.2	38
42	Tuning Polymer Thickness: Synthesis and Scaling Theory of Homologous Series of Dendronized Polymers. Journal of the American Chemical Society, 2009, 131, 11841-11854.	13.7	130