Nicolas Carels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9358727/publications.pdf

Version: 2024-02-01

279487 243296 2,067 67 23 44 citations h-index g-index papers 68 68 68 2695 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Data Science Approach for the Identification of Molecular Signatures of Aggressive Cancers. Cancers, 2022, 14, 2325.	1.7	3
2	Galaxy and MEAN Stack to Create a User-Friendly Workflow for the Rational Optimization of Cancer Chemotherapy. Frontiers in Genetics, 2021, 12, 624259.	1.1	6
3	SARS-CoV-2 Proteins Bind to Hemoglobin and Its Metabolites. International Journal of Molecular Sciences, 2021, 22, 9035.	1.8	41
4	Data-Driven Modeling of Breast Cancer Tumors Using Boolean Networks. Frontiers in Big Data, 2021, 4, 656395.	1.8	4
5	Atazanavir, Alone or in Combination with Ritonavir, Inhibits SARS-CoV-2 Replication and Proinflammatory Cytokine Production. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	109
6	Modeling Basins of Attraction for Breast Cancer Using Hopfield Networks. Frontiers in Genetics, 2020, 11, 314.	1.1	14
7	Challenges for the Optimization of Drug Therapy in the Treatment of Cancer. Computational Biology, 2020, , 163-198.	0.1	2
8	Proteome of the Triatomine Digestive Tract: From Catalytic to Immune Pathways; Focusing on Annexin Expression. Frontiers in Molecular Biosciences, 2020, 7, 589435.	1.6	8
9	Cellular Regulatory Network Modeling Applied to Breast Cancer. Computational Biology, 2020, , 339-365.	0.1	O
10	Signaling Complexity Measured by Shannon Entropy and Its Application in Personalized Medicine. Frontiers in Genetics, 2019, 10, 930.	1.1	22
11	Pervasive System Biology for Active Compound Valorization in Jatropha. , 2019, , 199-251.		O
12	Specific enzyme functionalities of Fusarium oxysporum compared to host plants. Gene, 2018, 676, 219-226.	1.0	3
13	System Biology to Access Target Relevance in the Research and Development of Molecular Inhibitors. Computational Biology, 2018, , 221-242.	0.1	2
14	The Challenge of Translating System Biology into Targeted Therapy of Cancer. Computational Biology, 2018, , 175-194.	0.1	1
15	In vitro Trypanocidal Activity, Genomic Analysis of Isolates, and in vivo Transcription of Type VI Secretion System of Serratia marcescens Belonging to the Microbiota of Rhodnius prolixus Digestive Tract. Frontiers in Microbiology, 2018, 9, 3205.	1.5	33
16	Cellular Reprogramming. Computational Biology, 2018, , 41-55.	0.1	1
17	A Metagenomic Analysis of Bacterial Microbiota in the Digestive Tract of Triatomines. Bioinformatics and Biology Insights, 2017, 11, 117793221773342.	1.0	14
18	A Computational Methodology to Overcome the Challenges Associated With the Search for Specific Enzyme Targets to Develop Drugs Against Leishmania major. Bioinformatics and Biology Insights, 2017, 11, 117793221771247.	1.0	3

#	Article	IF	Citations
19	Agrobacterium-mediated transformation of Jatropha curcas leaf explants with a fungal chitinase gene. African Journal of Biotechnology, 2016, 15, 2006-2016.	0.3	9
20	A strategy to identify housekeeping genes suitable for analysis in breast cancer diseases. BMC Genomics, 2016, 17, 639.	1.2	47
21	In silico structural characterization of protein targets for drug development against Trypanosoma cruzi. Journal of Molecular Modeling, 2016, 22, 244.	0.8	7
22	Toward precision medicine of breast cancer. Theoretical Biology and Medical Modelling, 2016, 13, 7.	2.1	48
23	Validation of a network-based strategy for the optimization of combinatorial target selection in breast cancer therapy: siRNA knockdown of network targets in MDA-MB-231 cells as an <i>in vitro</i> model for inhibition of tumor development. Oncotarget, 2016, 7, 63189-63203.	0.8	49
24	Editorial: Sustainable production of renewable energy from nonâ€food crops. Biotechnology Journal, 2015, 10, 503-503.	1.8	3
25	Optimization of combination chemotherapy based on the calculation of network entropy for protein-protein interactions in breast cancer cell lines. EPJ Nonlinear Biomedical Physics, 2015, 3, .	0.8	22
26	An Interpretation of the Ancestral Codon from Miller's Amino Acids and Nucleotide Correlations in Modern Coding Sequences. Bioinformatics and Biology Insights, 2015, 9, BBI.S24021.	1.0	5
27	A Computational Strategy to Select Optimized Protein Targets for Drug Development toward the Control of Cancer Diseases. PLoS ONE, 2015, 10, e0115054.	1.1	40
28	Characterization of the microbiota in the guts of Triatoma brasiliensis and Triatoma pseudomaculata infected by Trypanosoma cruzi in natural conditions using culture independent methods. Parasites and Vectors, 2015, 8, 245.	1.0	75
29	Perennial plants for biofuel production: Bridging genomics and field research. Biotechnology Journal, 2015, 10, 505-507.	1.8	15
30	Functional Genomics. , 2015, , 223-245.		0
31	A History of Genomic Structures: The Big Picture. , 2015, , 131-178.		0
32	ENTROPY MEASURES BASED METHOD FOR THE CLASSIFICATION OF PROTEIN DOMAINS INTO FAMILIES AND CLANS. , 2014, , .		0
33	The Purine Bias of Coding Sequences is Determined by Physicochemical Constraints on Proteins. Bioinformatics and Biology Insights, 2014, 8, BBI.S13161.	1.0	4
34	Karyology and Genomics of Jatropha: Current Status and Future Prospects., 2013,, 301-320.		3
35	Towards the Domestication of Jatropha: The Integration of Sciences. , 2013, , 263-299.		32
36	A Statistical Method without Training Step for the Classification of Coding Frame in Transcriptome Sequences. Bioinformatics and Biology Insights, 2013, 7, BBI.S10053.	1.0	8

#	Article	IF	CITATIONS
37	Metabolic Signatures of Triatomine Vectors of Trypanosoma cruzi Unveiled by Metabolomics. PLoS ONE, 2013, 8, e77283.	1.1	43
38	THE CONTRIBUTION OF STOP CODON FREQUENCY AND PURINE BIAS TO THE CLASSIFICATION OF CODING SEQUENCES. , 2013, , .		2
39	Cultivation-Independent Methods Reveal Differences among Bacterial Gut Microbiota in Triatomine Vectors of Chagas Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1631.	1.3	92
40	The Birth of a New Energy Crop., 2012,, 3-12.		1
41	EST profiling of resistant and susceptible Hevea infected by Microcyclus ulei. Physiological and Molecular Plant Pathology, 2011, 76, 126-136.	1.3	22
42	UNIVERSAL FEATURES FOR EXON PREDICTION., 2011,,.		0
43	Development, characterization, validation, and mapping of SSRs derived from Theobroma cacao L.–Moniliophthora perniciosa interaction ESTs. Tree Genetics and Genomes, 2010, 6, 663-676.	0.6	20
44	ESTs from Seeds to Assist the Selective Breeding of <i>Jatropha curcas</i> L. for Oil and Active Compounds. Genomics Insights, 2010, 3, GEI.S4340.	3.0	26
45	Universal Features for the Classification of Coding and Non-coding DNA Sequences. Bioinformatics and Biology Insights, 2009, 3, BBI.S2236.	1.0	6
46	Classifying Coding DNA with Nucleotide Statistics. Bioinformatics and Biology Insights, 2009, 3, BBI.S3030.	1.0	6
47	Chapter 2 Jatropha curcas. Advances in Botanical Research, 2009, 50, 39-86.	0.5	91
48	Single nucleotide polymorphisms from Theobroma cacao expressed sequence tags associated with witches' broom disease in cacao. Genetics and Molecular Research, 2009, 8, 799-808.	0.3	21
49	The mitochondrial genome of the phytopathogenic basidiomycete Moniliophthora perniciosa is 109kb in size and contains a stable integrated plasmid. Mycological Research, 2008, 112, 1136-1152.	2.5	87
50	Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Science, 2008, 174, 613-617.	1.7	182
51	Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa. Annals of Botany, 2007, 100, 129-140.	1.4	74
52	The maize gene space is compositionally compartimentalized. FEBS Letters, 2005, 579, 3867-3871.	1.3	2
53	The pig genome: compositional analysis and identification of the gene-richest regions in chromosomes and nuclei. Gene, 2004, 343, 245-251.	1.0	31
54	The mutual information theory for the certification of rice coding sequences. FEBS Letters, 2004, 568, 155-158.	1.3	5

#	Article	lF	CITATIONS
55	Using analytical ultracentrifugation to study compositional variation in vertebrate genomes. European Biophysics Journal, 2003, 32, 418-426.	1.2	20
56	Genome Properties of the Diatom Phaeodactylum tricornutum. Plant Physiology, 2002, 129, 993-1002.	2.3	119
57	Compositional heterogeneity within and among isochores in mammalian genomes. Gene, 2001, 276, 15-24.	1.0	34
58	Compositional mapping of chicken chromosomes and identification of the gene-richest regions. Chromosome Research, 2001, 9, 521-532.	1.0	54
59	Diversity and Phylogenetic Implications of CsCl Profiles from Rodent DNAs. Molecular Phylogenetics and Evolution, 2000, 17, 219-230.	1.2	19
60	The compositional organization and the expression of the Arabidopsis genome. FEBS Letters, 2000, 472, 302-306.	1.3	15
61	Two Classes of Genes in Plants. Genetics, 2000, 154, 1819-1825.	1.0	160
	1wo Classes of Genes in Flancs. Genetics, 2000, 15 i, 1015 1025.	1.2	162
62	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations. Journal of Molecular Evolution, 1999, 49, 330-342.	0.8	12
62	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations.		
	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations. Journal of Molecular Evolution, 1999, 49, 330-342. Compositional Properties of Homologous Coding Sequences from Plants. Journal of Molecular	0.8	12
63	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations. Journal of Molecular Evolution, 1999, 49, 330-342. Compositional Properties of Homologous Coding Sequences from Plants. Journal of Molecular Evolution, 1998, 46, 45-53. The distribution of genes in the genomes of Gramineae. Proceedings of the National Academy of	0.8	12 65
63	Synonymous and Nonsynonymous Substitutions in Genes from Gramineae: Intragenic Correlations. Journal of Molecular Evolution, 1999, 49, 330-342. Compositional Properties of Homologous Coding Sequences from Plants. Journal of Molecular Evolution, 1998, 46, 45-53. The distribution of genes in the genomes of Gramineae. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 6857-6861. The gene distribution of the maize genome Proceedings of the National Academy of Sciences of the	0.8 0.8 3.3	12 65 162