Suxia Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9358158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecological Modelling, 2005, 183, 301-322.	2.5	215
2	Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture, Ecosystems and Environment, 2009, 134, 67-78.	5.3	150
3	Crop yield responses to climate change in the Huang-Huai-Hai Plain of China. Agricultural Water Management, 2010, 97, 1195-1209.	5.6	141
4	Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 2004, 285, 125-142.	5.4	127
5	Contributions of climate change and vegetation greening to evapotranspiration trend in a typical hilly-gully basin on the Loess Plateau, China. Science of the Total Environment, 2019, 657, 325-339.	8.0	83
6	Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agricultural and Forest Meteorology, 2001, 109, 203-222.	4.8	76
7	Contributions of climate change, elevated atmospheric CO2 and human activities to ET and GPP trends in the Three-North Region of China. Agricultural and Forest Meteorology, 2020, 295, 108183.	4.8	70
8	Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach. Ecological Indicators, 2018, 87, 107-116.	6.3	58
9	Contributions of climate change and human activities to ET and GPP trends over North China Plain from 2000 to 2014. Journal of Chinese Geography, 2017, 27, 661-680.	3.9	54
10	Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain. Ecological Indicators, 2019, 104, 347-356.	6.3	54
11	Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981–2010. International Journal of Applied Earth Observation and Geoinformation, 2016, 48, 110-121.	2.8	50
12	Trends in land surface evapotranspiration across China with remotely sensed NDVI and climatological data for 1981–2010. Hydrological Sciences Journal, 2015, 60, 2163-2177.	2.6	42
13	Temporal variation of soil moisture over the Wuding River basin assessed with an eco-hydrological model, in-situ observations and remote sensing. Hydrology and Earth System Sciences, 2009, 13, 1375-1398.	4.9	38
14	Evaluation of an ecosystem model for a wheat–maize double cropping system over the North China Plain. Environmental Modelling and Software, 2012, 32, 61-73.	4.5	38
15	Using Stochastic Dynamic Programming to Support Water Resources Management in the Ziya River Basin, China. Journal of Water Resources Planning and Management - ASCE, 2015, 141, .	2.6	38
16	Attributing regional trends of evapotranspiration and gross primary productivity with remote sensing: a case study in the North China Plain. Hydrology and Earth System Sciences, 2017, 21, 295-310.	4.9	38
17	Spatial Variation of Soil Moisture in China: Geostatistical Characterization Journal of the Meteorological Society of Japan, 2001, 79, 555-574.	1.8	36
18	Hydroeconomic optimization of reservoir management under downstream water quality constraints. Journal of Hydrology, 2015, 529, 1679-1689.	5.4	26

Suxia Liu

#	Article	IF	CITATIONS
19	Attributing the changes of grass growth, water consumed and water use efficiency over the Tibetan Plateau. Journal of Hydrology, 2021, 598, 126464.	5.4	26
20	Variability, tendencies, and climate controls of terrestrial evapotranspiration and gross primary productivity in the recent decade over China. Ecohydrology, 2018, 11, e1951.	2.4	22
21	Assessing the impact of climate change on potential evapotranspiration in Aksu River Basin. Journal of Chinese Geography, 2011, 21, 609-620.	3.9	21
22	Exploring the interannual and spatial variations of <scp>ET</scp> and <scp>GPP</scp> with climate by a physical model and remote sensing data in a large basin of Northeast China. International Journal of Climatology, 2014, 34, 1945-1963.	3.5	21
23	Grid-size effects on estimation of evapotranspiration and gross primary production over a large Loess Plateau basin, China. Hydrological Sciences Journal, 2009, 54, 160-173.	2.6	19
24	Assessment of Three Common Methods for Estimating Terrestrial Water Storage Change with Three Reanalysis Datasets. Journal of Climate, 2020, 33, 511-525.	3.2	18
25	Response of vegetation ecosystems to flash drought with solar-induced chlorophyll fluorescence over the Hai River Basin, China during 2001–2019. Journal of Environmental Management, 2022, 313, 114947.	7.8	18
26	Polar Drift in the 1990s Explained by Terrestrial Water Storage Changes. Geophysical Research Letters, 2021, 48, e2020GL092114.	4.0	17
27	Optimizing water resources allocation in the Haihe River basin under groundwater sustainability constraints. Journal of Chinese Geography, 2019, 29, 935-958.	3.9	16
28	Retrieving dynamics of the surface water extent in the upper reach of Yellow River. Science of the Total Environment, 2021, 800, 149348.	8.0	16
29	Exploring spatiotemporal patterns and physical controls of soil moisture at various spatial scales. Theoretical and Applied Climatology, 2014, 118, 159-171.	2.8	15
30	Toward creating simpler hydrological models: A LASSO subset selection approach. Environmental Modelling and Software, 2015, 72, 33-43.	4.5	15
31	Intercomparison of microwave remote-sensing soil moisture data sets based on distributed eco-hydrological model simulation and <i>in situ</i> measurements overÂthe North China Plain. International Journal of Remote Sensing, 2013, 34, 6587-6610.	2.9	14
32	The cost of ending groundwater overdraft on the North China Plain. Hydrology and Earth System Sciences, 2016, 20, 771-785.	4.9	14
33	Attribution analyses of evapotranspiration and gross primary productivity changes in Ziya-Daqing basins, China during 2001–2015. Theoretical and Applied Climatology, 2020, 139, 1175-1189.	2.8	10
34	Estimating the minimum in-stream flow requirements via wetted perimeter method based on curvature and slope techniques. Journal of Chinese Geography, 2006, 16, 242-250.	3.9	6
35	Indexing the relationship between polar motion and water mass change in a giant river basin. Science China Earth Sciences, 2018, 61, 1065-1077.	5.2	6
36	Evapotranspiration on Natural and Reclaimed Coral Islands in the South China Sea. Remote Sensing, 2021, 13, 1110.	4.0	5

Suxia Liu

#	Article	IF	CITATIONS
37	A simple regional snow hydrological process-based snow depth model and its application in the Upper Yangtze River Basin. Hydrology Research, 2019, 50, 672-690.	2.7	4
38	On a PUB methodology from Chinese lessons. Hydrological Sciences Journal, 2014, 59, 2143-2157.	2.6	2
39	Soil water dynamics and water balance on a tropical coral island. Hydrological Processes, 2021, 35, e14415.	2.6	2
40	Relationship between polar motion and key hydrological elements at multiple scales. Science China Earth Sciences, 2022, 65, 882-898.	5.2	2
41	Difference of total precipitation and snowfall in the Upper Yangtze River basin under 1.5°C and 2°C global warming scenarios. Meteorology and Atmospheric Physics, 2021, 133, 295-315.	2.0	1
42	The Impact of Assuming Perfect Foresight in Hydroeconomic Analysis of Yellow River Diversions to the Hai River Basin, China: A Framework Combining Linear Programming and Model Predictive Control. Frontiers in Water, 2021, 3, .	2.3	1