
Won San Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9357941/publications.pdf Version: 2024-02-01

WON SAN CHOL

#	Article	lF	CITATIONS
1	Hybrid Bead Air Filters with Low Pressure Drops at a High Flow Rate for the Removal of Particulate Matter and HCHO. Polymers, 2022, 14, 422.	2.0	2
2	Solar-Driven Unmanned Hazardous and Noxious Substance Trapping Devices Equipped with Reverse Piloti Structures and Cooling Systems. Polymers, 2022, 14, 631.	2.0	1
3	Nanostructured Materials for Water Purification: Adsorption of Heavy Metal Ions and Organic Dyes. Polymers, 2022, 14, 2183.	2.0	29
4	A novel approach to designing air filters: Ubiquitous material-based Janus air filter modules with hydrophilic and hydrophobic parts. Chemical Engineering Journal, 2021, 410, 128302.	6.6	19
5	Wastepaper-Based Cylindrical Hollow Air Filter Module for the Removal of Particulate Matter (PM ₁₀ and PM _{2.5}) and HCHO. ACS Sustainable Chemistry and Engineering, 2020, 8, 13984-13996.	3.2	5
6	2D and 3D Bulk Materials for Environmental Remediation: Air Filtration and Oil/Water Separation. Materials, 2020, 13, 5714.	1.3	25
7	Superhydrophobic and superoleophilic nickel foam for oil/water separation. Korean Journal of Chemical Engineering, 2019, 36, 1313-1320.	1.2	29
8	Remote-Controlled Magnetic Sponge Balls and Threads for Oil/Water Separation in a Confined Space and Anaerobic Reactions. ACS Applied Materials & amp; Interfaces, 2019, 11, 40886-40897.	4.0	17
9	NiCo2S4 Nanotrees Directly Grown on the Nickel NP-Doped Reduced Graphene Oxides for Efficient Supercapacitors. Materials, 2019, 12, 2865.	1.3	4
10	One-Step Synthesis of Environmentally Friendly Superhydrophilic and Superhydrophobic Sponges for Oil/Water Separation. Materials, 2019, 12, 1182.	1.3	19
11	A Potential Amphiprotic Sponge with a Controlled Release Characteristic of Protons on Demand for Oil/Water Separation and Acid/Base Neutralization. Advanced Materials Interfaces, 2019, 6, 1900004.	1.9	13
12	A lottery draw machine-inspired movable air filter with high removal efficiency and low pressure drop at a high flow rate. Journal of Materials Chemistry A, 2019, 7, 6001-6011.	5.2	12
13	An Active Absorbent for Cleanup of High-Concentration Strong Acid and Base Solutions. Materials, 2019, 12, 3389.	1.3	2
14	One-pot synthesis of layered double hydroxide hollow nanospheres with ultrafast removal efficiency for heavy metal ions and organic contaminants. Chemosphere, 2018, 201, 676-686.	4.2	40
15	Polyelectrolyte Brush-Grafted Polydopamine-Based Catalysts with Enhanced Catalytic Activity and Stability. ACS Applied Materials & amp; Interfaces, 2018, 10, 1113-1124.	4.0	15
16	Crossover magnetic amphiprotic catalysts for oil/water separation, the purification of aqueous and non-aqueous pollutants, and organic synthesis. Chemical Engineering Journal, 2018, 331, 290-299.	6.6	25
17	Alkaliâ€Treated Mg–Al Layered Double Hydroxides for General Use: Oxidative Polymerization, Metal and Nanocarbon Oxidation, and Catalytic Decomposition of Pollutants. Advanced Materials Interfaces, 2018, 5, 1801366.	1.9	5
18	An anti-overturn Janus sponge with excellent floating stability for simultaneous pollutant remediation and oil/water separation. Journal of Materials Chemistry A, 2018, 6, 16371-16381.	5.2	45

Won San Choi

#	Article	IF	CITATIONS
19	Surface Design of Separators for Oil/Water Separation with High Separation Capacity and Mechanical Stability. Langmuir, 2017, 33, 8012-8022.	1.6	11
20	Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chemical Engineering Journal, 2017, 307, 208-219.	6.6	79
21	Structure-controllable superhydrophobic Cu meshes for effective separation of oils with different viscosities and aqueous pollutant purification. RSC Advances, 2016, 6, 17642-17650.	1.7	27
22	Cube sugar-like sponge/polymer brush composites for portable and user-friendly heavy metal ion adsorbents. Journal of Hazardous Materials, 2016, 320, 133-142.	6.5	25
23	Polydopamine-mediated all-in-one device with superhydrophilicity and superhydrophobicity for one-step oil/water separation and pollutant purification. Polymer, 2016, 107, 1-11.	1.8	23
24	A remote-controlled generation of gold@polydopamine (core@shell) nanoparticles via physical-chemical stimuli of polydopamine/gold composites. Scientific Reports, 2016, 6, 22650.	1.6	28
25	Inorganic Micelles: Inorganic Micelles (Hydrophilic Core@Amphiprotic Shell) for Multiple Applications (Adv. Funct. Mater. 38/2015). Advanced Functional Materials, 2015, 25, 6148-6148.	7.8	0
26	Inorganic Micelles (Hydrophilic Core@Amphiprotic Shell) for Multiple Applications. Advanced Functional Materials, 2015, 25, 6061-6070.	7.8	32
27	Facile synthesis of mesoporous SiO2 nanoparticles using the mobility differences of etchants. RSC Advances, 2015, 5, 26223-26230.	1.7	4
28	Magnesium hydroxide nanoplate/graphene oxide composites as efficient adsorbents for organic dyes. RSC Advances, 2015, 5, 83668-83673.	1.7	18
29	Rattle-type hierarchical particles containing multilevel cores (Ag@AgCl@SiO2 and) Tj ETQq1 1 0.784314 rgBT /C	Overlock 10	0 Tf 50 342 T
30	Neuron-like polyelectrolyte–carbon nanotube composites for ultra-high loading of metal nanoparticles. New Journal of Chemistry, 2014, 38, 4799-4806.	1.4	4
31	Evolution of AgX Nanowires into Ag Derivative Nano/microtubes for Highly Efficient Visible-Light Photocatalysts. ACS Applied Materials & Interfaces, 2013, 5, 11225-11233.	4.0	23
32	Self-assembly of individual polymer chain–metal nanoparticles for polymer cargo nanocomposites with tunable properties. Journal of Materials Chemistry A, 2013, 1, 3565.	5.2	8
33	Sandwich-like graphene nanocomposites armed with nanoneedles. Journal of Materials Chemistry, 2012, 22, 3148.	6.7	24
34	Gold nanoparticle-doped graphene nanosheets: sub-nanosized gold clusters nucleate and grow at the nitrogen-induced defects on graphene surfaces. Journal of Materials Chemistry, 2012, 22, 7130.	6.7	26
35	Free-standing polymer nanoactuators, nanoshutters, and nanofilters. Journal of Materials Chemistry, 2012, 22, 8215.	6.7	10
36	Polyelectrolyte complex particle-based multifunctional freestanding films containing highly loaded bimetallic particles, Journal of Materials Chemistry, 2011, 21, 11831	6.7	14

Won San Choi

#	Article	IF	CITATION
37	Grapheneâ€Based Multifunctional Iron Oxide Nanosheets with Tunable Properties. Chemistry - A European Journal, 2011, 17, 1214-1219.	1.7	78
38	Unusual growth of polyelectrolyte multilayers by introduction of a rugged multilayer template and their unique adsorption behaviors. Polymer, 2011, 52, 3112-3117.	1.8	4
39	Smart Microcapsules Encapsulating Reconfigurable Carbon Nanotube Cores. Advanced Functional Materials, 2010, 20, 820-825.	7.8	30
40	Emulsion-Based Synthesis of Reversibly Swellable, Magnetic Nanoparticle-Embedded Polymer Microcapsules. Chemistry of Materials, 2006, 18, 3308-3313.	3.2	94
41	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollowâ€Capsule Microreactor. Angewandte Chemie - International Edition, 2005, 44, 1096-1101.	7.2	52
42	"Graftingâ€From―Polymerization inside a Polyelectrolyte Hollow apsule Microreactor. Angewandte Chemie, 2005, 117, 1120-1125.	1.6	4
43	Synthesis of Two Types of Nanoparticles in Polyelectrolyte Capsule Nanoreactors and Their Dual Functionality. Journal of the American Chemical Society, 2005, 127, 16136-16142.	6.6	56