Ji Hye Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9357906/publications.pdf

Version: 2024-02-01

567144 642610 43 682 15 23 h-index citations g-index papers 43 43 43 601 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tris(5â€phenylâ€1 <i>H</i> àâ€1,2,4â€triazolyl)iridium(III) Complex and Its Use in Blue Phosphorescent Organic Lightâ€Emitting Diodes to Provide an External Quantum Efficiency of up to 27.8%. Advanced Optical Materials, 2021, 9, 2001957.	3.6	20
2	Alteration of intramolecular electronic transition <i>via</i> deboronation of carbazole-based <i>o</i> -carboranyl compound and intriguing †turn-on†memissive variation. RSC Advances, 2021, 11, 24057-24064.	1.7	4
3	Influence of Electronic Environment on the Radiative Efficiency of 9-Phenyl-9H-carbazole-Based ortho-Carboranyl Luminophores. Molecules, 2021, 26, 1763.	1.7	3
4	Impact of the Electronic Environment in Carbazole-Appended <i>>o</i> -Carboranyl Compounds on the Intramolecular-Charge-Transfer-Based Radiative Decay Efficiency. Organometallics, 2021, 40, 959-967.	1.1	12
5	Highly red-emissive salen–indium complexes: impact of 4-amino-substitution on the photophysical properties. Inorganic Chemistry Frontiers, 2021, 9, 119-126.	3.0	5
6	Spirobifluoreneâ€Based <i>>o</i> >â€Carboranyl Compounds: Insights into the Rotational Effect of Carborane Cages on Photoluminescence. Chemistry - A European Journal, 2020, 26, 548-557.	1.7	30
7	Multiple photoluminescence of spiro[acridine-fluorene]-based <i>o</i> -carboranyl compounds with potential as a visual sensory material. Journal of Materials Chemistry C, 2020, 8, 16896-16906.	2.7	18
8	Lithium Bromide/ <scp>HBpin</scp> : A Mild and Effective Catalytic System for the Selective Hydroboration of Aldehydes and Ketones. Bulletin of the Korean Chemical Society, 2020, 41, 1009-1018.	1.0	6
9	Planarity of <i>N</i> -aryl in appended 1,2,4-triazole-based <i>o</i> -carboranyl luminophores: a key factor to control intramolecular charge transfer. Inorganic Chemistry Frontiers, 2020, 7, 4180-4189.	3.0	17
10	Lithium bromide: an inexpensive and efficient catalyst for imine hydroboration with pinacolborane at room temperature. RSC Advances, 2020, 10, 34421-34427.	1.7	19
11	Quantitative NaH catalytic hydroboration of aldimines. New Journal of Chemistry, 2020, 44, 11330-11335.	1.4	16
12	Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers. Journal of Physical Chemistry B, 2020, 124, 5919-5929.	1.2	7
13	Deboronation-Induced Ratiometric Emission Variations of Terphenyl-Based Closo-o-Carboranyl Compounds: Applications to Fluoride-Sensing. Molecules, 2020, 25, 2413.	1.7	7
14	Insights into the effects of substitution position on the photophysics of mono- <i>o</i> -carborane-substituted pyrenes. Inorganic Chemistry Frontiers, 2020, 7, 2949-2959.	3.0	23
15	Higherâ€Order Cycloaddition of Nâ€Aromatic Zwitterions and Ketenes to Access Diazepine Derivatives. Asian Journal of Organic Chemistry, 2019, 8, 1654-1658.	1.3	11
16	Carbazole-Appended Salen–Indium Conjugate Systems: Synthesis and Enhanced Luminescence Efficiency. Inorganic Chemistry, 2019, 58, 12358-12364.	1.9	15
17	Catalytic Hydroboration of Aldehydes, Ketones, and Alkenes Using Potassium Carbonate: A Small Key to Big Transformation. ACS Omega, 2019, 4, 15893-15903.	1.6	46
18	Systematic Control of the Overlapping Energy Region for an Efficient Intramolecular Energy Transfer: Functionalized Salen–Al/Triphenylamine Guest–Host Assemblies. Inorganic Chemistry, 2019, 58, 2454-2462.	1.9	13

#	Article	IF	CITATIONS
19	Pyrazinoindole-Based Lewis-Acid/Base Assembly: Intriguing Intramolecular Charge-Transfer Switching through the Dual-Sensing of Fluoride and Acid. Journal of Organic Chemistry, 2019, 84, 3843-3852.	1.7	8
20	2-Phenylpyridine- and 2-(benzo[<i>b</i>]thiophen-2-yl)pyridine-based <i>o</i> -carboranyl compounds: impact of the structural formation of aromatic rings on photophysical properties. Dalton Transactions, 2019, 48, 1467-1476.	1.6	18
21	A Series of Quinolinol-Based Indium Luminophores: A Rational Design Approach for Manipulating Photophysical Properties. Inorganic Chemistry, 2019, 58, 8056-8063.	1.9	8
22	Photophysical Properties of Spirobifluorene-Based o-Carboranyl Compounds Altered by Structurally Rotating the Carborane Cages. Molecules, 2019, 24, 4135.	1.7	3
23	Lithium diisobutyl-tert-butoxyaluminum hydride (LDBBA) catalyzed hydroboration of alkynes and imines with pinacolborane. New Journal of Chemistry, 2019, 43, 16524-16529.	1.4	21
24	Planarity of terphenyl rings possessing <i>o</i> -carborane cages: turning on intramolecular-charge-transfer-based emission. Chemical Communications, 2019, 55, 14518-14521.	2.2	32
25	Effect of Planarity of Aromatic Rings Appended to o-Carborane on Photophysical Properties: A Series of o-Carboranyl Compounds Based on 2-Phenylpyridine- and 2-(Benzo[b]thiophen-2-yl)pyridine. Molecules, 2019, 24, 201.	1.7	9
26	Salen-indium/triarylborane triads: synthesis and ratiometric emission-colour changes by fluoride ion binding. Dalton Transactions, 2018, 47, 5310-5317.	1.6	13
27	A salen–Al/carbazole dyad-based guest–host assembly: enhancement of luminescence efficiency <i>via</i> intramolecular energy transfer. Chemical Communications, 2018, 54, 4712-4715.	2.2	13
28	Quinolinolâ€based Al/Triarylborane Dyad Assembly: Alteration of Electronic Transition States Mediated by Fluoride Anion Binding. Bulletin of the Korean Chemical Society, 2018, 39, 1294-1301.	1.0	3
29	Systematic design of indium-based luminophores with color-tunable emission via combined manipulation of HOMO and LUMO levels. Dyes and Pigments, 2018, 158, 285-294.	2.0	17
30	Effects of Multiâ \in Carborane Substitution on the Photophysical and Electronâ \in Accepting Properties of $\langle i \rangle \circ \langle i \rangle$ â \in Carboranylbenzene Compounds. European Journal of Inorganic Chemistry, 2017, 2017, 2496-2503.	1.0	15
31	Synthesis and photophysical properties of phenanthroimidazole–triarylborane dyads: intriguing â€~turn-on' sensing mediated by fluoride anions. RSC Advances, 2017, 7, 10345-10352.	1.7	16
32	Intriguing Indium-salen Complexes as Multicolor Luminophores. Inorganic Chemistry, 2017, 56, 2621-2626.	1.9	28
33	Biphenyl- and Fluorene-Based <i>o</i> -Carboranyl Compounds: Alteration of Photophysical Properties by Distortion of Biphenyl Rings. Organometallics, 2017, 36, 1522-1529.	1.1	53
34	Synthesis and Dual-Emission Feature of Salen-Al/Triarylborane Dyads. Inorganic Chemistry, 2017, 56, 6039-6043.	1.9	20
35	Deboronation-induced ratiometric emission sensing of fluoride by 1,3,5-tris-(o-carboranyl-methyl)benzene. Tetrahedron Letters, 2017, 58, 3246-3250.	0.7	9
36	Novel Dimeric <i>o</i> -Carboranyl Triarylborane: Intriguing Ratiometric Color-Tunable Sensor via Aggregation-Induced Emission by Fluoride Anions. Organometallics, 2016, 35, 1771-1777.	1.1	68

#	Article	IF	CITATIONS
37	Novel aluminum–BODIPY dyads: intriguing dual-emission via photoinduced energy transfer. Dalton Transactions, 2016, 45, 5825-5832.	1.6	15
38	Selective Synthesis of Homoleptic and Heteroleptic Triarylboranes and Their Novel Colour Tunable Properties. ChemistrySelect, 2016, 1, 1239-1242.	0.7	3
39	Synthesis and Multiâ€Oxo Anionâ€Binding Properties of Oligopyrrolic Macrocycles Based on Naphthobipyrrole. European Journal of Organic Chemistry, 2016, 2016, 3959-3963.	1.2	7
40	p-Terphenyl-based di-o-carboranyl compounds: Alteration of electronic transition state by terminal phenyl groups. Journal of Organometallic Chemistry, 2016, 825-826, 69-74.	0.8	7
41	Energetic and Dynamic Analysis of Transport of Na+ and K+ through a Cyclic Peptide Nanotube in Water and in Lipid Bilayers. Journal of Physical Chemistry B, 2016, 120, 11912-11922.	1.2	12
42	Unique prototropy of meso-alkylidenyl carbaporphyrinoid possessing one meso-exocyclic double bond. Chemical Communications, 2015, 51, 16506-16509.	2.2	6
43	Photodissociation Dynamics of Propargyl Alcohol at 212 nm: The OH Production Channel. Journal of Physical Chemistry A, 2010, 114, 2053-2058.	1.1	6