Robert Huber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9357643/publications.pdf

Version: 2024-02-01

377584 299063 1,871 42 49 21 h-index citations g-index papers 51 51 51 2487 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bridging behavioural factors and standard bioâ€economic modelling in an agentâ€based modelling framework. Journal of Agricultural Economics, 2022, 73, 35-63.	1.6	15
2	Scenarios for European agricultural policymaking in the era of digitalisation. Agricultural Systems, 2022, 196, 103318.	3.2	28
3	The role of contractors in the uptake of precision farming—A spatial economic analysis. Q Open, 2022, 2, .	0.7	2
4	Economic value of three grassland ecosystem services when managed at the regional and farm scale. Scientific Reports, 2022, 12, 4194.	1.6	11
5	Data on the stated adoption decisions of Swiss farmers for variable rate nitrogen fertilization technologies. Data in Brief, 2022, 41, 107979.	0.5	2
6	Comparing effectiveness and return on investment of action―and resultsâ€based agriâ€environmental payments in <scp>S</scp> witzerland. American Journal of Agricultural Economics, 2022, 104, 1585-1604.	2.4	23
7	Social network data of Swiss farmers related to agricultural climate change mitigation. Data in Brief, 2021, 35, 106898.	0.5	8
8	Agricultural policy in the era of digitalisation. Food Policy, 2021, 100, 102019.	2.8	80
9	Science with society: Evidence-based guidance for best practices in environmental transdisciplinary work. Global Environmental Change, 2021, 68, 102240.	3.6	56
10	Benefits of Increasing Information Accuracy in Variable Rate Technologies. Ecological Economics, 2021, 185, 107047.	2.9	29
11	Conservation Costs Drive Enrolment in Agglomeration Bonus Scheme. Ecological Economics, 2021, 186, 107064.	2.9	15
12	The role of non-cognitive skills in farmers' adoption of climate change mitigation measures. Ecological Economics, 2021, 189, 107169.	2.9	38
13	Policy Change Through Negotiated Agreements: The Case of Greening Swiss Agricultural Policy. Policy Studies Journal, 2021, 49, 731-756.	3.2	15
14	A Metaâ€analysis of the Willingness to Pay for Cultural Services from Grasslands in Europe. Journal of Agricultural Economics, 2020, 71, 357-383.	1.6	22
15	Data on farmers' adoption of climate change mitigation measures, individual characteristics, risk attitudes and social influences in a region of Switzerland. Data in Brief, 2020, 30, 105410.	0.5	11
16	Tracking societal concerns on pesticides – a Google Trends analysis. Environmental Research Letters, 2020, 15, 084049.	2.2	19
17	Assessment of spatial variability of multiple ecosystem services in grasslands of different intensities. Journal of Environmental Management, 2019, 251, 109372.	3.8	35
18	Actors' diversity and the resilience of social-ecological systems to global change. Nature Sustainability, 2019, 2, 290-297.	11.5	67

#	Article	IF	CITATIONS
19	Popular initiatives increasingly stimulate agricultural policy in Switzerland. EuroChoices, 2019, 18, 38-39.	0.6	19
20	Representation of decision-making in European agricultural agent-based models. Agricultural Systems, 2018, 167, 143-160.	3.2	108
21	Mapping uncertainties in the future provision of ecosystem services in a mountain region in Switzerland. Regional Environmental Change, 2017, 17, 2309-2321.	1.4	15
22	Interaction effects of targeted agri-environmental payments on non-marketed goods and services under climate change in a mountain region. Land Use Policy, 2017, 66, 49-60.	2.5	32
23	Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6148-6150.	3.3	454
24	On-farm compliance costs and N surplus reduction of mixed dairy farms under grassland-based feeding systems. Agricultural Systems, 2017, 154, 34-44.	3.2	21
25	Can soil-less crop production be a sustainable option for soil conservation and future agriculture?. Land Use Policy, 2017, 69, 102-105.	2.5	68
26	Economic valuation of cultural ecosystem service changes to a landscape in the Swiss Alps. Ecosystem Services, 2017, 26, 197-208.	2.3	48
27	Coupling a settlement growth model with an agro-economic land allocation model for securing ecosystem services provision. Journal of Environmental Planning and Management, 2017, 60, 1127-1152.	2.4	5
28	A backcasting approach for matching regional ecosystem services supply and demand. Environmental Modelling and Software, 2016, 75, 439-458.	1.9	44
29	Food Provision and Environmental Goals in the Swiss Agriâ€Food System: System Dynamics and the Socialâ€ecological Systems Framework. Systems Research and Behavioral Science, 2015, 32, 414-432.	0.9	19
30	How to successfully publish interdisciplinary research: learning from an Ecology and Society Special Feature. Ecology and Society, 2015, 20, .	1.0	11
31	Sensitivity Analysis of a Land-Use Change Model with and without Agents to Assess Land Abandonment and Long-Term Re-Forestation in a Swiss Mountain Region. Land, 2015, 4, 475-512.	1.2	23
32	Factors affecting farm growth intentions of family farms in mountain regions: Empirical evidence for Central Switzerland. Land Use Policy, 2015, 47, 188-197.	2.5	28
33	Erhaltung der LandwirtschaftsflÄ c hen bedingt Priorisierung der Leistungen (Essay). Schweizerische Zeitschrift Fur Forstwesen, 2015, 166, 208-212.	0.5	0
34	Inter- and transdisciplinary perspective on the integration of ecological processes into ecosystem services analysis in a mountain region. Ecological Processes, 2014, 3, .	1.6	17
35	Experience from downscaling IPCC-SRES scenarios to specific national-level focus scenarios for ecosystem service management. Technological Forecasting and Social Change, 2014, 86, 21-32.	6.2	16
36	Commitment to Continuous Research Is a Key Factor in Transdisciplinarity. Experiences from the <i>Mountland</i> Project. Gaia, 2014, 23, 256-262.	0.3	6

#	Article	IF	CITATIONS
37	Evaluating the relative impact of climate and economic changes on forest and agricultural ecosystem services in mountain regions. Journal of Environmental Management, 2013, 129, 414-422.	3.8	83
38	Combining Policy Network and Model-Based Scenario Analyses: An Assessment of Future Ecosystem Goods and Services in Swiss Mountain Regions. Ecology and Society, 2013, 18, .	1.0	19
39	Sustainable Land-use Practices in European Mountain Regions under Global Change: an Integrated Research Approach. Ecology and Society, 2013, 18, .	1.0	14
40	Sustainable Land Use in Mountain Regions Under Global Change: Synthesis Across Scales and Disciplines. Ecology and Society, 2013, 18 , .	1.0	42
41	Trade-Offs between Ecosystem Services in a Mountain Region. Ecology and Society, 2013, 18, .	1.0	125
42	Modeling Social-Ecological Feedback Effects in the Implementation of Payments for Environmental Services in Pasture-Woodlands. Ecology and Society, 2013, 18, .	1.0	38
43	Future of Mountain Agriculture in the Alps. Springer Geography, 2013, , 105-126.	0.3	22
44	Assessing the impacts of economic and climate changes on land-use in mountain regions: A spatial dynamic modeling approach. Agriculture, Ecosystems and Environment, 2012, 149, 50-63.	2.5	91
45	Waldausdehnung in zwei Regionen des Schweizer Berggebiets: eine integrative Analyse. Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 502-511.	0.5	1
46	Nachhaltige Land- und Forstwirtschaft im Berggebiet: das Forschungsprojekt «Mountland». Schweizerische Zeitschrift Fur Forstwesen, 2012, 163, 464-468.	0.5	0
47	Valuation of agricultural land-use scenarios with choice experiments: a political market share approach. Journal of Environmental Planning and Management, 2011, 54, 93-113.	2.4	18
48	WTO agreement on agriculture: Potential consequences for agricultural production and land- use patterns in the Swiss lowlands. Geografisk Tidsskrift, 2009, 109, 131-145.	0.4	5
49	Uncertainty in ecosystem services maps: the case of carbon stocks in the Brazilian Amazon forest using regression analysis. One Ecosystem, 0, 4, .	0.0	2