
Olivier Jolliet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/935716/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IMPACT 2002+: A new life cycle impact assessment methodology. International Journal of Life Cycle Assessment, 2003, 8, 324.	2.2	1,525
2	USEtox—the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. International Journal of Life Cycle Assessment, 2008, 13, 532-546.	2.2	1,180
3	System Boundary Selection in Life-Cycle Inventories Using Hybrid Approaches. Environmental Science & Technology, 2004, 38, 657-664.	4.6	876
4	Life cycle assessment Part 2: Current impact assessment practice. Environment International, 2004, 30, 721-739.	4.8	581
5	Identifying best existing practice for characterization modeling in life cycle impact assessment. International Journal of Life Cycle Assessment, 2013, 18, 683-697.	2.2	515
6	Life cycle impact assessment of pesticides on human health and ecosystems. Agriculture, Ecosystems and Environment, 2002, 93, 379-392.	2.5	322
7	Life cycle assessment of biofibres replacing glass fibres as reinforcement in plastics. Resources, Conservation and Recycling, 2001, 33, 267-287.	5.3	314
8	Building a Model Based on Scientific Consensus for Life Cycle Impact Assessment of Chemicals: The Search for Harmony and Parsimony. Environmental Science & Technology, 2008, 42, 7032-7037.	4.6	270
9	IMPACT World+: a globally regionalized life cycle impact assessment method. International Journal of Life Cycle Assessment, 2019, 24, 1653-1674.	2.2	262
10	Peer Reviewed: Defining Intake Fraction. Environmental Science & amp; Technology, 2002, 36, 206A-211A.	4.6	243
11	Environmental and economic life cycle assessment for sewage sludge treatment processes in Japan. Waste Management, 2009, 29, 696-703.	3.7	242
12	Best available practice regarding impact categories and category indicators in life cycle impact assessment. International Journal of Life Cycle Assessment, 1999, 4, 66.	2.2	230
13	Apparent Half-Lives of Dioxins, Furans, and Polychlorinated Biphenyls as a Function of Age, Body Fat, Smoking Status, and Breast-Feeding. Environmental Health Perspectives, 2009, 117, 417-425.	2.8	228
14	The LCIA midpoint-damage framework of the UNEP/SETAC life cycle initiative. International Journal of Life Cycle Assessment, 2004, 9, 394.	2.2	226
15	Life cycle assessment of processes for the treatment of wastewater urban sludge: energy and global warming analysis. Journal of Cleaner Production, 2005, 13, 287-299.	4.6	202
16	Multimedia Fate and Human Intake Modeling:Â Spatial versus Nonspatial Insights for Chemical Emissions in Western Europe. Environmental Science & Technology, 2005, 39, 1119-1128.	4.6	186
17	Health impact and damage cost assessment of pesticides in Europe. Environment International, 2012, 49, 9-17.	4.8	183
18	USEtox human exposure and toxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 2011, 16, 710-727	2.2	180

#	Article	IF	CITATIONS
19	USEtox fate and ecotoxicity factors for comparative assessment of toxic emissions in life cycle analysis: sensitivity to key chemical properties. International Journal of Life Cycle Assessment, 2011, 16, 701-709.	2.2	164
20	Life cycle assessment of two baby food packaging alternatives: glass jars vs. plastic pots. International Journal of Life Cycle Assessment, 2009, 14, 95-106.	2.2	159
21	The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA. International Journal of Life Cycle Assessment, 2008, 13, 477-486.	2.2	153
22	Estimating Half-Lives for Pesticide Dissipation from Plants. Environmental Science & Technology, 2014, 48, 8588-8602.	4.6	150
23	Life cycle assessment of end-of-life options for two biodegradable packaging materials: sound application of the European waste hierarchy. Journal of Cleaner Production, 2015, 86, 132-145.	4.6	149
24	Environmental analysis of intensity level in wheat crop production using life cycle assessment. Agriculture, Ecosystems and Environment, 2006, 113, 216-225.	2.5	147
25	Climate change and health: Indoor heat exposure in vulnerable populations. Environmental Research, 2012, 112, 20-27.	3.7	147
26	Plant uptake of pesticides and human health: Dynamic modeling of residues in wheat and ingestion intake. Chemosphere, 2011, 85, 1639-1647.	4.2	141
27	LCIA framework and cross-cutting issues guidance within the UNEP-SETAC Life Cycle Initiative. Journal of Cleaner Production, 2017, 161, 957-967.	4.6	141
28	Intake Fraction for Particulate Matter: Recommendations for Life Cycle Impact Assessment. Environmental Science & Technology, 2011, 45, 4808-4816.	4.6	132
29	Life cycle human health impacts of 875 pesticides. International Journal of Life Cycle Assessment, 2016, 21, 722-733.	2.2	125
30	Analytical uncertainty propagation in life cycle inventory and impact assessment: application to an automobile front panel. International Journal of Life Cycle Assessment, 2010, 15, 499-510.	2.2	113
31	Exploring consumer exposure pathways and patterns of use for chemicals in the environment. Toxicology Reports, 2015, 2, 228-237.	1.6	113
32	A flexible matrix algebra framework for the multimedia multipathway modeling of emission to impacts. Environment International, 2007, 33, 624-634.	4.8	109
33	Spatially explicit fate factors of phosphorous emissions to freshwater at the global scale. International Journal of Life Cycle Assessment, 2012, 17, 646-654.	2.2	109
34	Dynamic Multicrop Model to Characterize Impacts of Pesticides in Food. Environmental Science & Technology, 2011, 45, 8842-8849.	4.6	104
35	A spatially explicit life cycle inventory of the global textile chain. International Journal of Life Cycle Assessment, 2009, 14, 443-455.	2.2	96

 $_{36}$ Life cycle assessment of spray dried soluble coffee and comparison with alternatives (drip filter and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

#	Article	IF	CITATIONS
37	Mineral resources in life cycle impact assessment—part I: a critical review of existing methods. International Journal of Life Cycle Assessment, 2020, 25, 784-797.	2.2	95
38	Global guidance on environmental life cycle impact assessment indicators: impacts of climate change, fine particulate matter formation, water consumption and land use. International Journal of Life Cycle Assessment, 2018, 23, 2189-2207.	2.2	94
39	Global guidance on environmental life cycle impact assessment indicators: progress and case study. International Journal of Life Cycle Assessment, 2016, 21, 429-442.	2.2	88
40	A framework for the assessment of marine litter impacts in life cycle impact assessment. Ecological Indicators, 2021, 129, 107918.	2.6	87
41	Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 1-Cancer Effects. Risk Analysis, 2002, 22, 931-946.	1.5	86
42	Intake Fraction for Multimedia Pollutants: A Tool for Life Cycle Analysis and Comparative Risk Assessment. Risk Analysis, 2002, 22, 905-918.	1.5	84
43	Mineral resources in life cycle impact assessment: part II – recommendations on application-dependent use of existing methods and on future method development needs. International Journal of Life Cycle Assessment, 2020, 25, 798-813.	2.2	84
44	Dynamics of pesticide uptake into plants: From system functioning to parsimonious modeling. Environmental Modelling and Software, 2013, 40, 316-324.	1.9	80
45	LCâ€IMPACT: A regionalized life cycle damage assessment method. Journal of Industrial Ecology, 2020, 24, 1201-1219.	2.8	80
46	Consensus Modeling of Median Chemical Intake for the U.S. Population Based on Predictions of Exposure Pathways. Environmental Science & Technology, 2019, 53, 719-732.	4.6	78
47	Assessing Human Health Response in Life Cycle Assessment Using ED10s and DALYs: Part 2-Noncancer Effects. Risk Analysis, 2002, 22, 947-963.	1.5	77
48	Coupled near-field and far-field exposure assessment framework for chemicals in consumer products. Environment International, 2016, 94, 508-518.	4.8	74
49	Toward a general physiologically-based pharmacokinetic model for intravenously injected nanoparticles. International Journal of Nanomedicine, 2016, 11, 625.	3.3	73
50	A life cycle assessment framework combining nutritional and environmental health impacts of diet: a case study on milk. International Journal of Life Cycle Assessment, 2016, 21, 734-746.	2.2	73
51	HORTITRANS, a Model for Predicting and Optimizing Humidity and Transpiration in Greenhouses. Biosystems Engineering, 1994, 57, 23-37.	0.4	71
52	Parameterization Models for Pesticide Exposure via Crop Consumption. Environmental Science & Technology, 2012, 46, 12864-12872.	4.6	71
53	Indoor inhalation intake fractions of fine particulate matter: review of influencing factors. Indoor Air, 2016, 26, 836-856.	2.0	71
54	A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environment International, 2020, 137, 105496.	4.8	70

#	Article	IF	CITATIONS
55	Risk and Regulatory Hazard-Based Toxicological Effect Indicators in Life-Cycle Assessment (LCA). Human and Ecological Risk Assessment (HERA), 2006, 12, 450-475.	1.7	67
56	Assessing the Importance of Spatial Variability versus Model Choices in Life Cycle Impact Assessment: The Case of Freshwater Eutrophication in Europe. Environmental Science & Technology, 2013, 47, 13565-13570.	4.6	67
57	Life cycle assessment of second generation (2G) and third generation (3G) mobile phone networks. Environment International, 2006, 32, 656-675.	4.8	65
58	Integrating life cycle costs and environmental impacts of composite rail car-bodies for a Korean train. International Journal of Life Cycle Assessment, 2009, 14, 429-442.	2.2	65
59	Physiologically based pharmacokinetic modeling of polyethylene glycol-coated polyacrylamide nanoparticles in rats. Nanotoxicology, 2014, 8, 128-137.	1.6	65
60	Defining Product Intake Fraction to Quantify and Compare Exposure to Consumer Products. Environmental Science & Technology, 2015, 49, 8924-8931.	4.6	65
61	Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop. International Journal of Life Cycle Assessment, 2015, 20, 276-288.	2.2	65
62	Risk-Based High-Throughput Chemical Screening and Prioritization using Exposure Models and in Vitro Bioactivity Assays. Environmental Science & Technology, 2015, 49, 6760-6771.	4.6	63
63	Chemicals of concern in plastic toys. Environment International, 2021, 146, 106194.	4.8	63
64	Global guidance on environmental life cycle impact assessment indicators: findings of the scoping phase. International Journal of Life Cycle Assessment, 2014, 19, 962-967.	2.2	62
65	The Glasgow consensus on the delineation between pesticide emission inventory and impact assessment for LCA. International Journal of Life Cycle Assessment, 2015, 20, 765-776.	2.2	62
66	Toward harmonizing ecotoxicity characterization in life cycle impact assessment. Environmental Toxicology and Chemistry, 2018, 37, 2955-2971.	2.2	62
67	Estimate ecotoxicity characterization factors for chemicals in life cycle assessment using machine learning models. Environment International, 2020, 135, 105393.	4.8	62
68	Characterizing Aggregated Exposure to Primary Particulate Matter: Recommended Intake Fractions for Indoor and Outdoor Sources. Environmental Science & (2017), 2017, 51, 9089-9100.	4.6	61
69	LCC-The economic pillar of sustainability: Methodology and application to wastewater treatment. Environmental Progress, 2003, 22, 241-249.	0.8	59
70	Analytical Propagation of Uncertainty in Life Cycle Assessment Using Matrix Formulation. Journal of Industrial Ecology, 2013, 17, 485-492.	2.8	59
71	A review of models for near-field exposure pathways of chemicals in consumer products. Science of the Total Environment, 2017, 574, 1182-1208.	3.9	59
72	Tissue distribution and pharmacokinetics of stable polyacrylamide nanoparticles following intravenous injection in the rat. Toxicology and Applied Pharmacology, 2011, 251, 181-190.	1.3	58

#	Article	IF	CITATIONS
73	Characterizing the burden of disease of particulate matter for life cycle impact assessment. Air Quality, Atmosphere and Health, 2015, 8, 29-46.	1.5	58
74	Exposure and toxicity characterization of chemical emissions and chemicals in products: global recommendations and implementation in USEtox. International Journal of Life Cycle Assessment, 2021, 26, 899-915.	2.2	58
75	The end of life treatment of second generation mobile phone networks: Strategies to reduce the environmental impact. Environmental Impact Assessment Review, 2005, 25, 540-566.	4.4	57
76	In vivo biodistribution and physiologically based pharmacokinetic modeling of inhaled fresh and aged cerium oxide nanoparticles in rats. Particle and Fibre Toxicology, 2015, 13, 45.	2.8	57
77	Overview and recommendations for regionalized life cycle impact assessment. International Journal of Life Cycle Assessment, 2019, 24, 856-865.	2.2	57
78	Small targeted dietary changes can yield substantial gains for human health and the environment. Nature Food, 2021, 2, 616-627.	6.2	57
79	Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. Environmental Science & Technology, 2021, 55, 25-43.	4.6	54
80	Towards a new index for environmental sustainability based on a DALY weighting approach. Sustainable Development, 2008, 16, 251-260.	6.9	52
81	Spatial analysis of toxic emissions in LCA: A sub-continental nested USEtox model with freshwater archetypes. Environment International, 2014, 69, 67-89.	4.8	52
82	Indoor Air Pollutant Exposure for Life Cycle Assessment: Regional Health Impact Factors for Households. Environmental Science & amp; Technology, 2015, 49, 12823-12831.	4.6	52
83	A biophysical approach to allocation of life cycle environmental burdens for fluid milk supply chain analysis. International Dairy Journal, 2013, 31, S41-S49.	1.5	51
84	Comparison of modeling approaches to prioritize chemicals based on estimates of exposure and exposure potential. Science of the Total Environment, 2013, 458-460, 555-567.	3.9	49
85	Global Effect Factors for Exposure to Fine Particulate Matter. Environmental Science & Technology, 2019, 53, 6855-6868.	4.6	49
86	The clearwater consensus: the estimation of metal hazard in fresh water. International Journal of Life Cycle Assessment, 2010, 15, 143-147.	2.2	48
87	Consumption-based human health impacts of primary PM2.5: The hidden burden of international trade. Journal of Cleaner Production, 2017, 167, 133-139.	4.6	48
88	Assessing regional intake fractions in North America. Science of the Total Environment, 2009, 407, 4812-4820.	3.9	46
89	New approach methodologies for exposure science. Current Opinion in Toxicology, 2019, 15, 76-92.	2.6	46
90	Advancements in Life Cycle Human Exposure and Toxicity Characterization. Environmental Health Perspectives, 2018, 126, 125001.	2.8	44

#	Article	IF	CITATIONS
91	Modeling the Influence of Intermittent Rain Events on Long-Term Fate and Transport of Organic Air Pollutants. Environmental Science & Technology, 2005, 39, 4513-4522.	4.6	42
92	Life cycle human health and ecotoxicological impacts assessment of electricity production from wood biomass compared to coal fuel. Applied Energy, 2017, 187, 564-574.	5.1	42
93	A quantitative assessment of Beneficial Management Practices to reduce carbon and reactive nitrogen footprints and phosphorus losses on dairy farms in the US Great Lakes region. Agricultural Systems, 2018, 166, 10-25.	3.2	40
94	Characterizing honey bee exposure and effects from pesticides for chemical prioritization and life cycle assessment. Environment International, 2020, 138, 105642.	4.8	40
95	Indoor intake fraction considering surface sorption of air organic compounds for life cycle assessment. International Journal of Life Cycle Assessment, 2012, 17, 919-931.	2.2	39
96	Multi-pathway exposure modeling of chemicals in cosmetics with application to shampoo. Environment International, 2016, 92-93, 87-96.	4.8	39
97	Combining Material Flow Analysis, Life Cycle Assessment, and Multiattribute Utility Theory. Journal of Industrial Ecology, 2013, 17, 642-655.	2.8	38
98	Making Sense of the Minefield of Footprint Indicators. Environmental Science & Technology, 2015, 49, 2601-2603.	4.6	38
99	Area of concern: a new paradigm in life cycle assessment for the development of footprint metrics. International Journal of Life Cycle Assessment, 2016, 21, 276-280.	2.2	38
100	Stochastic modeling of near-field exposure to parabens in personal care products. Journal of Exposure Science and Environmental Epidemiology, 2017, 27, 152-159.	1.8	38
101	OMNIITOX - operational life-cycle impact assessment models and information tools for practitioners. International Journal of Life Cycle Assessment, 2004, 9, 282.	2.2	35
102	Establishing a Framework for Life Cycle Toxicity Assessment. Findings of the Lausanne Review Workshop (4 pp). International Journal of Life Cycle Assessment, 2006, 11, 209-212.	2.2	35
103	Operational Life Cycle Impact Assessment weighting factors based on Planetary Boundaries: Applied to cosmetic products. Ecological Indicators, 2019, 107, 105498.	2.6	33
104	Life cycle based alternatives assessment (LCAA) for chemical substitution. Green Chemistry, 2020, 22, 6008-6024.	4.6	33
105	Using life cycle approaches to enhance the value of corporate environmental disclosures. Business Strategy and the Environment, 2011, 20, 38-54.	8.5	32
106	Continent-specific Intake Fractions and Characterization Factors for Toxic Emissions: Does it make a Difference?. International Journal of Life Cycle Assessment, 2006, 11, 55-63.	2.2	31
107	Defining intake fraction. Environmental Science & amp; Technology, 2002, 36, 207A-211A.	4.6	31
108	Toxicity assessment of the main pesticides used in Costa Rica. Agriculture, Ecosystems and Environment, 2007, 118, 183-190.	2.5	29

#	Article	IF	CITATIONS
109	Modeling the Emergence of Antibiotic Resistance in the Environment: an Analytical Solution for the Minimum Selection Concentration. Antimicrobial Agents and Chemotherapy, 2018, 62, .	1.4	29
110	Toward refined environmental scenarios for ecological risk assessment of down-the-drain chemicals in freshwater environments. Integrated Environmental Assessment and Management, 2017, 13, 233-248.	1.6	28
111	High-throughput exposure modeling to support prioritization of chemicals in personal care products. Chemosphere, 2016, 163, 490-498.	4.2	26
112	A quantitative structureâ€property relationship (<scp>QSPR</scp>) for estimating solid materialâ€air partition coefficients of organic compounds. Indoor Air, 2019, 29, 79-88.	2.0	26
113	Progresses in Life Cycle Impact Assessment within the UNEP/SETAC Life Cycle Initiative. International Journal of Life Cycle Assessment, 2005, 10, 447-448.	2.2	25
114	Heavy metal partitioning from electronic scrap during thermal End-of-Life treatment. Science of the Total Environment, 2007, 373, 576-584.	3.9	25
115	A bright future for addressing chemical emissions in life cycle assessment. International Journal of Life Cycle Assessment, 2011, 16, 697.	2.2	25
116	High Throughput Risk and Impact Screening of Chemicals in Consumer Products. Risk Analysis, 2021, 41, 627-644.	1.5	25
117	CKow: A Dynamic Model for Chemical Transfer to Meat and Milk. Environmental Science & Technology, 2009, 43, 8191-8198.	4.6	24
118	A parsimonious model for the release of volatile organic compounds (VOCs) encapsulated in products. Atmospheric Environment, 2016, 127, 223-235.	1.9	24
119	Dose-Response Modeling for Life Cycle Impact Assessment - Findings of the Portland Review Workshop. International Journal of Life Cycle Assessment, 2006, 11, 137-140.	2.2	23
120	Material flow, economic and environmental life cycle performances of informal electronic waste recycling in a Thai community. Resources, Conservation and Recycling, 2022, 180, 106129.	5.3	22
121	Integrating exposure to chemicals in building materials during use stage. International Journal of Life Cycle Assessment, 2019, 24, 1009-1026.	2.2	21
122	Fate modelling of nanoparticle releases in LCA: An integrative approach towards "USEtox4Nano― Journal of Cleaner Production, 2019, 206, 701-712.	4.6	21
123	Spatial Variability and Uncertainty of Water Use Impacts from U.S. Feed and Milk Production. Environmental Science & Technology, 2017, 51, 2382-2391.	4.6	20
124	High-throughput migration modelling for estimating exposure to chemicals in food packaging in screening and prioritization tools. Food and Chemical Toxicology, 2017, 109, 428-438.	1.8	20
125	Multiscale Spatial Modeling of Human Exposure from Local Sources to Global Intake. Environmental Science & Technology, 2018, 52, 701-711.	4.6	20
126	Estimating mouthing exposure to chemicals in children's products. Journal of Exposure Science and Environmental Epidemiology, 2022, 32, 94-102.	1.8	20

#	Article	IF	CITATIONS
127	Chemicals of concern in building materials: A high-throughput screening. Journal of Hazardous Materials, 2022, 424, 127574.	6.5	20
128	Fate coefficients for the toxicity assessment of air pollutants. International Journal of Life Cycle Assessment, 1997, 2, 104-110.	2.2	19
129	Case Report: Human Exposure to Dioxins from Clay. Environmental Health Perspectives, 2008, 116, 238-242.	2.8	19
130	Dairy farm greenhouse gas impacts: A parsimonious model for a farmer's decision support tool. International Dairy Journal, 2013, 31, S65-S77.	1.5	19
131	A global framework to model spatial ecosystems exposure to home and personal care chemicals in Asia. Science of the Total Environment, 2018, 622-623, 410-420.	3.9	19
132	Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agriculture, Ecosystems and Environment, 2017, 237, 31-44.	2.5	18
133	Source-to-exposure assessment with the Pangea multi-scale framework – case study in Australia. Environmental Sciences: Processes and Impacts, 2018, 20, 133-144.	1.7	18
134	Rapid Prediction of Chemical Ecotoxicity Through Genetic Algorithm Optimized Neural Network Models. ACS Sustainable Chemistry and Engineering, 2020, 8, 12168-12176.	3.2	18
135	Qualitative Approach to Comparative Exposure in Alternatives Assessment. Integrated Environmental Assessment and Management, 2019, 15, 880-894.	1.6	17
136	Impact of Occupational Exposure to Chemicals in Life Cycle Assessment: A Novel Characterization Model Based on Measured Concentrations and Labor Hours. Environmental Science & Technology, 2015, 49, 8741-8750.	4.6	15
137	Towards integrating toxicity characterization into environmental studies: case study of bromine in soils. Environmental Science and Pollution Research, 2019, 26, 19814-19827.	2.7	15
138	Metrics and indices to assess the life cycle costs and greenhouse gas impacts of a dairy digester. Journal of Cleaner Production, 2014, 79, 98-107.	4.6	14
139	Analysis of beneficial management practices to mitigate environmental impacts in dairy production systems around the Great Lakes. Agricultural Systems, 2019, 176, 102660.	3.2	14
140	Modeling chemical releases from building materials: The search for extended validity domain and parsimony. Building Simulation, 2021, 14, 1277-1293.	3.0	14
141	Calculating Intake of Dietary Risk Components Used in the Global Burden of Disease Studies from the What We Eat in America/National Health and Nutrition Examination Surveys. Nutrients, 2018, 10, 1441.	1.7	13
142	Human Health Benefits from Fish Consumption vs. Risks from Inhalation Exposures Associated with Contaminated Sediment Remediation: Dredging of the Hudson River. Environmental Health Perspectives, 2019, 127, 127004.	2.8	13
143	A combined quantitative property-property relationship (QPPR) for estimating packaging-food and solid material-water partition coefficients of organic compounds. Science of the Total Environment, 2019, 658, 493-500.	3.9	13
144	Characterization of age-based trends to identify chemical biomarkers of higher levels in children. Environment International, 2019, 122, 117-129.	4.8	13

#	Article	IF	CITATIONS
145	User needs analysis and development of priorities for life cycle impact assessment. International Journal of Life Cycle Assessment, 2004, 9, 153-160.	2.2	12
146	Towards Win–Win Policies for Healthy and Sustainable Diets in Switzerland. Nutrients, 2020, 12, 2745.	1.7	12
147	Environmental Assessment of End-of-Life Treatment Options for a GSM 900 Antenna Rack (12 pp paper) Tj ETQq1	1,0.7843 2.2	14 rgBT /0
148	Characterising the relationships between physiological indicators and all-cause mortality (NHANES): a population-based cohort study. The Lancet Healthy Longevity, 2021, 2, e651-e662.	2.0	11
149	Human health no-effect levels of TiO2 nanoparticles as a function of their primary size. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	10
150	Dredging Contaminated Sediments: Is it Worth the Risks?. Environmental Toxicology and Chemistry, 2020, 39, 515-515.	2.2	10
151	Particulate Matter Formation. LCA Compendium, 2015, , 97-113.	0.8	10
152	Prioritising sustainable consumption patterns: key decisions and environmental gains. International Journal of Innovation and Sustainable Development, 2007, 2, 140.	0.3	9
153	Estimation of age- and sex-specific background human serum concentrations of PCDDs, PCDFs, and PCBs in the UMDES and NHANES populations. Chemosphere, 2013, 91, 817-823.	4.2	9
154	Quantitative Property–Property Relationship for Screening-Level Prediction of Intrinsic Clearance: A Tool for Exposure Modeling for High-Throughput Toxicity Screening Data. Applied in Vitro Toxicology, 2015, 1, 140-146.	0.6	9
155	A Need for a Paradigm Shift in Healthy Nutrition Research. Frontiers in Nutrition, 2022, 9, 881465.	1.6	9
156	Occupational Health Impacts Due to Exposure to Organic Chemicals over an Entire Product Life Cycle. Environmental Science & Technology, 2016, 50, 13105-13114.	4.6	8
157	Case Report: The University of Michigan Dioxin Exposure Study: A Follow-up Investigation of a Case with High Serum Concentration of 2,3,4,7,8-Pentachlorodibenzofuran. Environmental Health Perspectives, 2010, 118, 1313-1317.	2.8	7
158	Drivers and Barriers Toward Healthy and Environmentally Sustainable Eating in Switzerland: Linking Impacts to Intentions and Practices. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	7
159	Life Cycle Approaches for Sustainable Consumption - 24th LCA Swiss Discussion Forum. International Journal of Life Cycle Assessment, 2005, 10, 228-229.	2.2	6
160	Energy Burdens of Conventional Wholesale and Retail Portions of Product Life Cycles. Journal of Industrial Ecology, 2008, 6, 59-69.	2.8	6
161	Atmospheric fate of non-volatile and ionizable compounds. Chemosphere, 2011, 85, 1353-1359.	4.2	6
162	The Importance of Considering Product Loss Rates in Life Cycle Assessment: The Example of Closure Systems for Bottled Wine. Sustainability, 2012, 4, 2673-2706.	1.6	6

#	Article	IF	CITATIONS
163	Life cycle health impacts of polycyclic aromatic hydrocarbon for source-specific mixtures. International Journal of Life Cycle Assessment, 2015, 20, 87-99.	2.2	6
164	Global spatial analysis of toxic emissions to freshwater: operationalization for LCA. International Journal of Life Cycle Assessment, 2019, 24, 501-517.	2.2	6
165	Assessing and reducing the environmental impact of dairy production systems in the northern US in a changing climate. Agricultural Systems, 2021, 192, 103170.	3.2	6
166	The effects of presenting health and environmental impacts of food on consumption intentions. Food Quality and Preference, 2022, 98, 104501.	2.3	6
167	Identification of occupations susceptible to high exposure and risk associated with multiple toxicants in an observational study: National Health and Nutrition Examination Survey 1999–2014. Exposome, 2022, 2, .	1.2	6
168	Spatial variability of ecosystem exposure to home and personal care chemicals in Asia. Environment International, 2020, 134, 105260.	4.8	5
169	Identifying the link between chemical exposures and breast cancer in African American women via integrated in vitro and exposure biomarker data. Toxicology, 2021, 463, 152964.	2.0	5
170	Human Toxicity. LCA Compendium, 2015, , 75-96.	0.8	5
171	<i>In vitro</i> -based human toxicity effect factors: challenges and opportunities for nanomaterial impact assessment. Environmental Science: Nano, 2022, 9, 1913-1925.	2.2	5
172	Sustainability in the information society. International Journal of Life Cycle Assessment, 2004, 9, 208-210.	2.2	4
173	Life Cycle Risks and Impacts of Nanotechnologies. , 2013, , 213-278.		4
174	Standardized Recipes and Their Influence on the Environmental Impact Assessment of Mixed Dishes: A Case Study on Pizza. Sustainability, 2020, 12, 9466.	1.6	3
175	Integrating Dietary Impacts in Food Life Cycle Assessment. Frontiers in Nutrition, 0, 9, .	1.6	3
176	Life Cycle Approaches for Green Investment - 26th LCA Swiss Discussion Forum. International Journal of Life Cycle Assessment, 2005, 10, 454-456.	2.2	2
177	Integrated Environmental Assessment, Part IV. Journal of Industrial Ecology, 2010, 14, 188-191.	2.8	2
178	Abstract P226: HEalth Nutritional Index (HENI): A Health Burden Based Tool for Food and Diet Nutritional Evaluation. Circulation, 2018, 137, .	1.6	2
179	An Exposome-Based Approach to Environmental and Nutritional Impacts of Food on Human Health. ISEE Conference Abstracts, 2018, 2018, .	0.0	2
180	Life cycle assessment of food systems and diets. , 2022, , 37-62.		2

#	Article	IF	CITATIONS
181	Emergence and Future of Life Cycle Impact Assessment: Good science comes from good people. International Journal of Life Cycle Assessment, 2006, 11, 9-10.	2.2	1
182	Supporting Information: Dose-Response Modeling for Life Cycle Impact Assessment. Findings of the Portland Review Workshop. International Journal of Life Cycle Assessment, 2006, 11, 140-141.	2.2	0