Michael V Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Direct left-ventricular global longitudinal strain (GLS) computation with a fully convolutional network. Journal of Biomechanics, 2022, 130, 110878.	0.9	4
2	Validation of a deep-learning semantic segmentation approach to fully automate MRI-based left-ventricular deformation analysis in cardiotoxicity. British Journal of Radiology, 2021, 94, 20201101.	1.0	2
3	A deep-learning semantic segmentation approach to fully automated MRI-based left-ventricular deformation analysis in cardiotoxicity. Magnetic Resonance Imaging, 2021, 78, 127-139.	1.0	13
4	The Role of Pyroptosis in Ischemic and Reperfusion Injury of the Heart. Journal of Cardiovascular Pharmacology and Therapeutics, 2021, 26, 562-574.	1.0	20
5	What Are Optimal P2Y12 Inhibitor and Schedule of Administration in Patients With Acute Coronary Syndrome?. Journal of Cardiovascular Pharmacology and Therapeutics, 2020, 25, 121-130.	1.0	6
6	Biventricular diastolic dysfunction, thrombocytopenia, and red blood cell macrocytosis in experimental pulmonary arterial hypertension. Pulmonary Circulation, 2020, 10, 1-12.	0.8	7
7	Can post-chemotherapy cardiotoxicity be detected in long-term survivors of breast cancer via comprehensive 3D left-ventricular contractility (strain) analysis?. Magnetic Resonance Imaging, 2019, 62, 94-103.	1.0	5
8	Ticagrelor Does Not Protect Isolated Rat Hearts, Thus Clouding Its Proposed Cardioprotective Role Through ENT 1 in Heart Tissue. Journal of Cardiovascular Pharmacology and Therapeutics, 2019, 24, 371-376.	1.0	9
9	Circulating blood cells and extracellular vesicles in acute cardioprotection. Cardiovascular Research, 2019, 115, 1156-1166.	1.8	106
10	Myocardial Stunning After Electrocution With Complete Reversibility Within 24 Hours: Role of Repeat Transthoracic Echocardiograms in Potential Cardiac Transplant Donors. Cardiology Research, 2018, 9, 268-272.	0.5	0
11	Caspase-1 inhibition by VX-765 administered at reperfusion in P2Y12 receptor antagonist-treated rats provides long-term reduction in myocardial infarct size and preservation of ventricular function. Basic Research in Cardiology, 2018, 113, 32.	2.5	127
12	Introduction to a mechanism for automated myocardium boundary detection with displacement encoding with stimulated echoes (DENSE). British Journal of Radiology, 2018, 91, 20170841.	1.0	10
13	The Highly Selective Caspase-1 Inhibitor VX-765 Provides Additive Protection Against Myocardial Infarction in Rat Hearts When Combined With a Platelet Inhibitor. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 574-578.	1.0	41
14	Letter by Downey and Cohen Regarding Article, "Protective Effects of Ticagrelor on Myocardial Injury After Infarction― Circulation, 2017, 135, e1000-e1001.	1.6	3
15	The impact of irreproducibility and competing protection from P2Y12 antagonists on the discovery of cardioprotective interventions. Basic Research in Cardiology, 2017, 112, 64.	2.5	42
16	Cangrelor-Mediated Cardioprotection Requires Platelets and Sphingosine Phosphorylation. Cardiovascular Drugs and Therapy, 2016, 30, 229-232.	1.3	43
17	Mitochondrially targeted Endonuclease III has a powerful anti-infarct effect in an in vivo rat model of myocardial ischemia/reperfusion. Basic Research in Cardiology, 2015, 110, 3.	2.5	55
18	Signalling pathways and mechanisms of protection in pre―and postconditioning: historical perspective and lessons for the future. British Journal of Pharmacology, 2015, 172, 1913-1932.	2.7	100

MICHAEL V COHEN

#	Article	IF	CITATIONS
19	Triple Therapy Greatly Increases Myocardial Salvage During Ischemia/Reperfusion in the in situ Rat Heart. Cardiovascular Drugs and Therapy, 2013, 27, 403-412.	1.3	74
20	Two Classes of Anti-Platelet Drugs Reduce Anatomical Infarct Size in Monkey Hearts. Cardiovascular Drugs and Therapy, 2013, 27, 109-115.	1.3	61
21	Platelet P2Y ₁₂ Blockers Confer Direct Postconditioning-Like Protection in Reperfused Rabbit Hearts. Journal of Cardiovascular Pharmacology and Therapeutics, 2013, 18, 251-262.	1.0	133
22	A2B or not 2B: that is the question: AUTHORS' RETROSPECTIVE. Cardiovascular Research, 2012, 96, 198-201.	1.8	0
23	ls It Time to Translate Ischemic Preconditioning's Mechanism of Cardioprotection into Clinical Practice?. Journal of Cardiovascular Pharmacology and Therapeutics, 2011, 16, 273-280.	1.0	28
24	lschemic Postconditioning: From Receptor to End-Effector. Antioxidants and Redox Signaling, 2011, 14, 821-831.	2.5	87
25	Adenosine: trigger and mediator of cardioprotection. Basic Research in Cardiology, 2008, 103, 203-215.	2.5	186
26	Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning's success. Basic Research in Cardiology, 2008, 103, 464-471.	2.5	106
27	The pH Hypothesis of Postconditioning. Circulation, 2007, 115, 1895-1903.	1.6	267
28	Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. Journal of Molecular and Cellular Cardiology, 2007, 42, 842-851.	0.9	62
29	Nitric oxide is a preconditioning mimetic and cardioprotectant and is the basis of many available infarct-sparing strategies. Cardiovascular Research, 2006, 70, 231-239.	1.8	111
30	Efficacy of preconditioning should be gauged by reduction of infarction. British Journal of Pharmacology, 2004, 141, 197-198.	2.7	4
31	Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. Journal of the American College of Cardiology, 2004, 44, 1103-1110.	1.2	459
32	Ischemic Preconditioning Through Opening of Swelling-Activated Chloride Channels?. Circulation Research, 2001, 89, .	2.0	6
33	Acetylcholine, Bradykinin, Opioids, and Phenylephrine, but not Adenosine, Trigger Preconditioning by Generating Free Radicals and Opening Mitochondrial K ATP Channels. Circulation Research, 2001, 89, 273-278.	2.0	285
34	SB 203580, an inhibitor of p38 MAPK, abolishes infarct-limiting effect of ischemic preconditioning in isolated rabbit hearts. Basic Research in Cardiology, 2000, 95, 466-471.	2.5	56
35	Do mitochondrial K ATP channels serve as triggers rather than end-effectors of ischemic preconditioning's protection?. Basic Research in Cardiology, 2000, 95, 272-274.	2.5	28
36	lschemic Preconditioning: From Adenosine Receptor to KATPChannel. Annual Review of Physiology, 2000, 62, 79-109.	5.6	454

MICHAEL V COHEN

#	Article	IF	CITATIONS
37	lschemic preconditioning depends on interaction between mitochondrial K _{ATP} channels and actin cytoskeleton. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 276, H1361-H1368.	1.5	97
38	Smaller infarct after preconditioning does not predict extent of early functional improvement of reperfused heart. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H1754-H1761.	1.5	38
39	Signal Transduction in Ischemic Preconditioning: Journal of Cardiovascular Electrophysiology, 1999, 10, 741-754.	0.8	110
40	Title is missing!. Molecular and Cellular Biochemistry, 1998, 186, 3-12.	1.4	125
41	MYOCARDIAL PRECONDITIONING PROMISES TO BE A NOVEL APPROACH TO THE TREATMENT OF ISCHEMIC HEART DISEASE. Annual Review of Medicine, 1996, 47, 21-29.	5.0	65
42	Chelerythrine, a highly selective protein kinase C inhibitor, blocks the antiinfarct effect of ischemic preconditioning in rabbit hearts. Cardiovascular Drugs and Therapy, 1994, 8, 881-882.	1.3	67