
B Shankar Goud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356780/publications.pdf Version: 2024-02-01

R SHANKAR COUD

#	Article	IF	CITATIONS
1	Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Studies in Thermal Engineering, 2021, 23, 100819.	5.7	119
2	Thermal radiation impact on MHD heat transfer natural convective nano fluid flow over an impulsively started vertical plate. Case Studies in Thermal Engineering, 2021, 24, 100826.	5.7	107
3	Radiation effect on MHD Casson fluid flow over an inclined non-linear surface with chemical reaction in a Forchheimer porous medium. AEJ - Alexandria Engineering Journal, 2022, 61, 8207-8220.	6.4	62
4	Effectiveness of Nonuniform Heat Generation (Sink) and Thermal Characterization of a Carreau Fluid Flowing across a Nonlinear Elongating Cylinder: A Numerical Study. ACS Omega, 2022, 7, 25309-25320.	3.5	55
5	Effects of soret, dufour, hall current and rotation on MHD natural convective heat and mass transfer flow past an accelerated vertical plate through a porous medium. International Journal of Thermofluids, 2021, 9, 100061.	7.8	51
6	Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. International Journal of Thermofluids, 2020, 7-8, 100044.	7.8	50
7	Irregular heat source impact on carreau nanofluid flowing via exponential expanding cylinder: A thermal case study. Case Studies in Thermal Engineering, 2022, 36, 102171.	5.7	45
8	Effect of thermal radiation on magnetohydrodynamics heat transfer micropolar fluid flow over a vertical moving porous plate. Experimental and Computational Multiphase Flow, 2023, 5, 149-158.	3.9	44
9	Effect of Heat source on an unsteady MHD free convection flow of Casson fluid past a vertical oscillating plate in porous medium using finite element analysis. Partial Differential Equations in Applied Mathematics, 2020, 2, 100015.	2.4	37
10	Heat generation/absorption on MHD flow of a micropolar fluid over a heated stretching surface in the presence of the boundary parameter. Heat Transfer, 2021, 50, 6129-6147.	3.0	37
11	Thermal radiation and Joule heating effects on a magnetohydrodynamic Casson nanofluid flow in the presence of chemical reaction through a non-linear inclined porous stretching sheet. Journal of Naval Architecture and Marine Engineering, 2020, 17, 143-164.	1.2	37
12	Transport properties of a hydromagnetic radiative stagnation point flow of a nanofluid across a stretching surface. Case Studies in Thermal Engineering, 2022, 31, 101839.	5.7	34
13	Finite element Soret Dufour effects on an unsteady MHD heat and mass transfer flow past an accelerated inclined vertical plate. Heat Transfer, 2021, 50, 8553-8578.	3.0	32
14	Ohmic heating and chemical reaction effect on MHD flow of micropolar fluid past a stretching surface. Partial Differential Equations in Applied Mathematics, 2021, 4, 100104.	2.4	30
15	2D mixed convection non-Darcy model with radiation effect in a nanofluid over an inclined wavy surface. AEJ - Alexandria Engineering Journal, 2022, 61, 9965-9976.	6.4	29
16	Finite element study of Soret number effects on MHD flow of Jeffrey fluid through a vertical permeable moving plate. Partial Differential Equations in Applied Mathematics, 2020, 1, 100005.	2.4	28
17	Multiple slip effects on steady MHD flow past a non-isothermal stretching surface in presence of Soret, Dufour with suction/injection. International Communications in Heat and Mass Transfer, 2022, 134, 106024.	5.6	28
18	Influence of radiation and viscous dissipation on MHD heat transfer Casson nanofluid flow along a nonlinear stretching surface with chemical reaction. Heat Transfer, 2022, 51, 3495-3511.	3.0	26

B Shankar Goud

#	Article	IF	CITATIONS
19	Influence of slip condition on transient laminar flow over an infinite vertical plate with ramped temperature in the presence of chemical reaction and thermal radiation. Heat Transfer, 2021, 50, 7654-7671.	3.0	23
20	Induced magnetic field effect on MHD free convection flow in nonconducting and conducting vertical microchannel walls. Heat Transfer, 2022, 51, 2201-2218.	3.0	22
21	Suction effect on the dynamics of EMHD casson nanofluid over an induced stagnation point flow of stretchable electromagnetic plate with radiation and chemical reaction. Results in Engineering, 2022, 15, 100518.	5.1	18
22	Chemical Reactive and Viscous Dissipative Flow of Magneto Nanofluid via Natural Convection by Employing Galerkin Finite Element Technique. Coatings, 2022, 12, 151.	2.6	17
23	MHD heat and mass transfer stagnation point nanofluid flow along a stretching sheet influenced by thermal radiation. Journal of Thermal Analysis and Calorimetry, 2022, 147, 11991-12003.	3.6	17
24	Nonâ€Newtonian electromagnetic fluid flow through a slanted parabolic started Riga surface with ramped energy. Heat Transfer, 2022, 51, 5589-5606.	3.0	15
25	Numerical Case Study of Chemical Reaction Impact on MHD Micropolar Fluid Flow Past over a Vertical Riga Plate. Materials, 2022, 15, 4060.	2.9	14
26	Radiation and heat absorption effects on an unsteady MHD boundary layer flow along an accelerated infinite vertical plate with ramped plate temperature in the existence of slip condition. Partial Differential Equations in Applied Mathematics, 2021, 4, 100166.	2.4	12
27	MHD heat transfer flow over a moving wedge with convective boundary conditions with the influence of viscous dissipation and internal heat generation/absorption. Heat Transfer, 2022, 51, 5015-5029.	3.0	11
28	Chemical Reaction and Mhd Flow for Magnetic Field Effect on Heat and Mass Transfer of Fluid Flow Through a Porous Medium Onto a Moving Vertical Plate. International Journal of Applied Mechanics and Engineering, 2022, 27, 226-244.	0.7	11
29	FEM to study the radiation, Soret, Dufour numbers effect on heat and mass transfer of magneto-Casson fluid over a vertical permeable plate in the presence of viscous dissipation. Waves in Random and Complex Media, 0, , 1-22.	2.7	11
30	Numerical Solution of Natural Convection on a Vertical Stretching Surface with Suction and Blowing. International Journal of Heat and Technology, 2021, 39, 1469-1474.	0.6	10
31	Joule heating and thermal radiation impact on MHD boundary layer Nanofluid flow along an exponentially stretching surface with thermal stratified medium. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 2023, 237, 107-119.	0.6	9
32	RADIATION EFFECT ON MHD BOUNDARY LAYER FLOW DUE TO AN EXPONENTIALLY STRETCHING SHEET. Advances in Mathematics: Scientific Journal (discontinued), 2020, 9, 10755-10761.	0.2	8
33	Numerical investigation of MHD flow of Williamson nanofluid with variable viscosity pasting a wedge within porous media: A nonâ€Darcy model approach. Heat Transfer, 2022, 51, 6071-6086.	3.0	8
34	Impact of velocity slip and heat source on tangent hyperbolic nanofluid flow over an electromagnetic surface with Soret effect and variable suction/injection. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2023, 237, 645-657.	2.5	6
35	The Joule Heating Effect on MHD Natural Convective Fluid Flow In A Permeable Medium Over A Semi-Infinite Inclined Vertical Plate In The Presence Of The Chemical Reaction. IOP Conference Series: Materials Science and Engineering, 2020, 993, 012111.	0.6	4
36	Thermal radioactive influence on MHD free convection flow across a porous medium in a vertical surface with temperature. AIP Conference Proceedings, 2020, , .	0.4	2