
Alistair R R Forrest

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356555/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	The Transcriptional Landscape of the Mammalian Genome. Science, 2005, 309, 1559-1563.	6.0	3,227
2	An atlas of active enhancers across human cell types and tissues. Nature, 2014, 507, 455-461.	13.7	2,269
3	A promoter-level mammalian expression atlas. Nature, 2014, 507, 462-470.	13.7	1,838
4	Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature, 2002, 420, 563-573.	13.7	1,548
5	Genome-wide analysis of mammalian promoter architecture and evolution. Nature Genetics, 2006, 38, 626-635.	9.4	1,201
6	Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature Methods, 2008, 5, 613-619.	9.0	952
7	An atlas of human long non-coding RNAs with accurate $5\hat{a}\in^2$ ends. Nature, 2017, 543, 199-204.	13.7	898
8	Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature, 2012, 491, 454-457.	13.7	881
9	The regulated retrotransposon transcriptome of mammalian cells. Nature Genetics, 2009, 41, 563-571.	9.4	731
10	Gateways to the FANTOM5 promoter level mammalian expression atlas. Genome Biology, 2015, 16, 22.	3.8	687
11	A draft network of ligand–receptor-mediated multicellular signalling in human. Nature Communications, 2015, 6, 7866.	5.8	676
12	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 140, 744-752.	13.5	667
13	Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science, 2015, 347, 1010-1014.	6.0	517
14	An integrated expression atlas of miRNAs and their promoters in human and mouse. Nature Biotechnology, 2017, 35, 872-878.	9.4	456
15	The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics, 2009, 41, 553-562.	9.4	408
16	Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biology, 2020, 21, 130.	3.8	342
17	Tiny RNAs associated with transcription start sites in animals. Nature Genetics, 2009, 41, 572-578.	9.4	327
18	Hierarchical folding and reorganization of chromosomes are linked to transcriptional changesÂin cellular differentiation. Molecular Systems Biology, 2015, 11, 852.	3.2	305

#	Article	IF	CITATIONS
19	The miR-17-5p microRNA is a key regulator of the G1/S phase cell cycle transition. Genome Biology, 2008, 9, R127.	13.9	278
20	Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nature Genetics, 2014, 46, 558-566.	9.4	271
21	A predictive computational framework for direct reprogramming between human cell types. Nature Genetics, 2016, 48, 331-335.	9.4	263
22	Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia, 2010, 24, 460-466.	3.3	229
23	Stromal cell diversity associated with immune evasion in human tripleâ€negative breast cancer. EMBO Journal, 2020, 39, e104063.	3.5	224
24	Effects of cytosine methylation on transcription factor binding sites. BMC Genomics, 2014, 15, 119.	1.2	214
25	MiR-107 and MiR-185 Can Induce Cell Cycle Arrest in Human Non Small Cell Lung Cancer Cell Lines. PLoS ONE, 2009, 4, e6677.	1.1	200
26	FANTOM5 CAGE profiles of human and mouse samples. Scientific Data, 2017, 4, 170112.	2.4	195
27	CACEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucleic Acids Research, 2015, 43, e51-e51.	6.5	194
28	The Abundance of Short Proteins in the Mammalian Proteome. PLoS Genetics, 2006, 2, e52.	1.5	189
29	Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood, 2014, 123, e58-e67.	0.6	175
30	Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome Research, 2011, 21, 1150-1159.	2.4	172
31	Transcript Annotation in FANTOM3: Mouse Gene Catalog Based on Physical cDNAs. PLoS Genetics, 2006, 2, e62.	1.5	165
32	Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nature Biotechnology, 2014, 32, 217-219.	9.4	163
33	Analysis of the human monocyte-derived macrophage transcriptome and response to lipopolysaccharide provides new insights into genetic aetiology of inflammatory bowel disease. PLoS Genetics, 2017, 13, e1006641.	1.5	161
34	Transcription and enhancer profiling in human monocyte subsets. Blood, 2014, 123, e90-e99.	0.6	157
35	Sensitization to immune checkpoint blockade through activation of a STAT1/NK axis in the tumor microenvironment. Science Translational Medicine, 2019, 11, .	5.8	147
36	Predicting cell-to-cell communication networks using NATMI. Nature Communications, 2020, 11, 5011.	5.8	137

Alistair R R Forrest

#	Article	IF	CITATIONS
37	Update of the FANTOM web resource: high resolution transcriptome of diverse cell types in mammals. Nucleic Acids Research, 2017, 45, D737-D743.	6.5	116
38	Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells' differentiation in vitro and in neurochemical models of Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 114.	1.8	112
39	Differential roles of epigenetic changes and Foxp3 expression in regulatory T cell-specific transcriptional regulation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5289-5294.	3.3	111
40	Functional annotation of human long noncoding RNAs via molecular phenotyping. Genome Research, 2020, 30, 1060-1072.	2.4	109
41	Novel genes regulated by Sonic Hedgehog in pluripotent mesenchymal cells. Oncogene, 2002, 21, 8196-8205.	2.6	108
42	scMatch: a single-cell gene expression profile annotation tool using reference datasets. Bioinformatics, 2019, 35, 4688-4695.	1.8	108
43	Comparison of CAGE and RNA-seq transcriptome profiling using clonally amplified and single-molecule next-generation sequencing. Genome Research, 2014, 24, 708-717.	2.4	99
44	Regulation of CDC25B phosphatases subcellular localization. Oncogene, 2000, 19, 2179-2185.	2.6	98
45	Cdc25B activity is regulated by 14-3-3. Oncogene, 2001, 20, 4393-4401.	2.6	96
46	Generation of Diversity in the Innate Immune System: Macrophage Heterogeneity Arises from Gene-Autonomous Transcriptional Probability of Individual Inducible Genes. Journal of Immunology, 2002, 168, 44-50.	0.4	94
47	Complementing tissue characterization by integrating transcriptome profiling from the Human Protein Atlas and from the FANTOM5 consortium. Nucleic Acids Research, 2015, 43, 6787-6798.	6.5	94
48	A rescue strategy for multimapping short sequence tags refines surveys of transcriptional activity by CAGE. Genomics, 2008, 91, 281-288.	1.3	92
49	Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages. Scientific Reports, 2018, 8, 6758.	1.6	92
50	Systematic Characterization of the Zinc-Finger-Containing Proteins in the Mouse Transcriptome. Genome Research, 2003, 13, 1430-1442.	2.4	89
51	Pax9 and Jagged1 act downstream of Gli3 in vertebrate limb development. Mechanisms of Development, 2005, 122, 1218-1233.	1.7	89
52	Cdc25-dependent activation of cyclin A/cdk2 is blocked in G2 phase arrested cells independently of ATM/ATR. Oncogene, 2001, 20, 921-932.	2.6	84
53	Transcriptome Analysis of Recurrently Deregulated Genes across Multiple Cancers Identifies New Pan-Cancer Biomarkers. Cancer Research, 2016, 76, 216-226.	0.4	80
54	The enhancer and promoter landscape of human regulatory and conventional T-cell subpopulations. Blood, 2014, 123, e68-e78.	0.6	77

#	Article	IF	CITATIONS
55	The FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Genome Biology, 2009, 10, R40.	13.9	73
56	A Novel Corepressor, BCoR-L1, Represses Transcription through an Interaction with CtBP. Journal of Biological Chemistry, 2007, 282, 15248-15257.	1.6	72
57	Analysis of the DNA methylome and transcriptome in granulopoiesis reveals timed changes and dynamic enhancer methylation. Blood, 2014, 123, e79-e89.	0.6	72
58	LRRN4 and UPK3B Are Markers of Primary Mesothelial Cells. PLoS ONE, 2011, 6, e25391.	1.1	71
59	14-3-3 Acts as an Intramolecular Bridge to Regulate cdc25B Localization and Activity. Journal of Biological Chemistry, 2003, 278, 28580-28587.	1.6	69
60	Systematic analysis of transcription start sites in avian development. PLoS Biology, 2017, 15, e2002887.	2.6	68
61	FANTOM4 EdgeExpressDB: an integrated database of promoters, genes, microRNAs, expression dynamics and regulatory interactions. Genome Biology, 2009, 10, R39.	13.9	67
62	Alternate transcription of the Toll-like receptor signaling cascade. Genome Biology, 2006, 7, R10.	13.9	66
63	FANTOM5 transcriptome catalog of cellular states based on Semantic MediaWiki. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw105.	1.4	64
64	Multiple Splicing Variants of cdc25B Regulate G2/M Progression. Biochemical and Biophysical Research Communications, 1999, 260, 510-515.	1.0	61
65	RECLU: a pipeline to discover reproducible transcriptional start sites and their alternative regulation using capped analysis of gene expression (CAGE). BMC Genomics, 2014, 15, 269.	1.2	61
66	Pseudo–Messenger RNA: Phantoms of the Transcriptome. PLoS Genetics, 2006, 2, e23.	1.5	58
67	The frequent evolutionary birth and death of functional promoters in mouse and human. Genome Research, 2015, 25, 1546-1557.	2.4	55
68	The FANTOM5 collection, a data series underpinning mammalian transcriptome atlases in diverse cell types. Scientific Data, 2017, 4, 170113.	2.4	55
69	Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics. Nucleic Acids Research, 2015, 43, 6969-6982.	6.5	54
70	Ceruloplasmin Is a Novel Adipokine Which Is Overexpressed in Adipose Tissue of Obese Subjects and in Obesity-Associated Cancer Cells. PLoS ONE, 2014, 9, e80274.	1.1	50
71	Update of the FANTOM web resource: from mammalian transcriptional landscape to its dynamic regulation. Nucleic Acids Research, 2011, 39, D856-D860.	6.5	49
72	The statistical geometry of transcriptome divergence in cell-type evolution and cancer. Nature Communications, 2015, 6, 6066.	5.8	49

#	Article	IF	CITATIONS
73	CAGE profiling of ncRNAs in hepatocellular carcinoma reveals widespread activation of retroviral LTR promoters in virus-induced tumors. Genome Research, 2015, 25, 1812-1824.	2.4	49
74	Genome-wide review of transcriptional complexity in mouse protein kinases and phosphatases. Genome Biology, 2006, 7, R5.	13.9	48
75	Mesencephalic dopaminergic neurons express a repertoire of olfactory receptors and respond to odorant-like molecules. BMC Genomics, 2014, 15, 729.	1.2	46
76	DeepCAGE Transcriptomics Reveal an Important Role of the Transcription Factor MAFB in the Lymphatic Endothelium. Cell Reports, 2015, 13, 1493-1504.	2.9	46
77	Whole genome transcriptome analysis. RNA Biology, 2009, 6, 107-112.	1.5	44
78	Phosphoregulators: Protein Kinases and Protein Phosphatases of Mouse. Genome Research, 2003, 13, 1443-1454.	2.4	43
79	Tissue-specific gene expression in soybean (Glycine max) detected by cDNA microarray analysis. Journal of Plant Physiology, 2002, 159, 1361-1374.	1.6	39
80	Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions. Molecular Genetics and Metabolism, 2014, 112, 73-83.	0.5	39
81	Integration of genetics and miRNA–target gene network identified disease biology implicated in tissue specificity. Nucleic Acids Research, 2018, 46, 11898-11909.	6.5	39
82	A transient disruption of fibroblastic transcriptional regulatory network facilitates <i>trans</i> -differentiation. Nucleic Acids Research, 2014, 42, 8905-8913.	6.5	35
83	The Constrained Maximal Expression Level Owing to Haploidy Shapes Gene Content on the Mammalian X Chromosome. PLoS Biology, 2015, 13, e1002315.	2.6	32
84	YY1 binding association with sex-biased transcription revealed through X-linked transcript levels and allelic binding analyses. Scientific Reports, 2016, 6, 37324.	1.6	32
85	The combination of gene perturbation assay and ChIP-chip reveals functional direct target genes for IRF8 in THP-1 cells. Molecular Immunology, 2010, 47, 2295-2302.	1.0	31
86	Functional annotation of the vlinc class of non-coding RNAs using systems biology approach. Nucleic Acids Research, 2016, 44, 3233-3252.	6.5	31
87	Bi-allelic mutations in MYL1 cause a severe congenital myopathy. Human Molecular Genetics, 2018, 27, 4263-4272.	1.4	31
88	Promoter-level expression clustering identifies time development of transcriptional regulatory cascades initiated by ErbB receptors in breast cancer cells. Scientific Reports, 2015, 5, 11999.	1.6	30
89	Linking FANTOM5 CAGE peaks to annotations with CAGEscan. Scientific Data, 2017, 4, 170147.	2.4	29
90	Antisense Transcription in Loci Associated to Hereditary Neurodegenerative Diseases. Molecular Neurobiology, 2019, 56, 5392-5415.	1.9	29

#	Article	IF	CITATIONS
91	Comparative transcriptomics of primary cells in vertebrates. Genome Research, 2020, 30, 951-961.	2.4	29
92	Characterizing Embryonic Gene Expression Patterns in the Mouse Using Nonredundant Sequence-Based Selection. Genome Research, 2003, 13, 2609-2620.	2.4	27
93	Transcriptional Dynamics During Human Adipogenesis and Its Link to Adipose Morphology and Distribution. Diabetes, 2017, 66, 218-230.	0.3	27
94	Anlaysis of complementary expression profiles following WT1 induction versus repression reveals the cholesterol/fatty acid synthetic pathways as a possible major target of WT1. Oncogene, 2004, 23, 3067-3079.	2.6	25
95	Retinoic acid potentiates inflammatory cytokines in human mast cells: Identification of mast cells as prominent constituents of the skin retinoid network. Molecular and Cellular Endocrinology, 2015, 406, 49-59.	1.6	25
96	Integrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC. Molecular Cancer Research, 2017, 15, 1354-1365.	1.5	25
97	On-the-fly selection of cell-specific enhancers, genes, miRNAs and proteins across the human body using SlideBase. Database: the Journal of Biological Databases and Curation, 2016, 2016, .	1.4	24
98	Transcriptome Analysis Uncovers a Growth-Promoting Activity of Orosomucoid-1 on Hepatocytes. EBioMedicine, 2017, 24, 257-266.	2.7	24
99	New era in genetics of early-onset muscle disease: Breakthroughs and challenges. Seminars in Cell and Developmental Biology, 2017, 64, 160-170.	2.3	24
100	Technical Advance: Transcription factor, promoter, and enhancer utilization in human myeloid cells. Journal of Leukocyte Biology, 2015, 97, 985-995.	1.5	23
101	Reinforcing the association between distal <i>1q</i> CNVs and structural brain disorder: A case of a complex <i>1q43â€q44</i> CNV and a review of the literature. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2016, 171, 458-467.	1.1	23
102	Unravelling the molecular basis for regulatory Tâ€cell plasticity and loss of function in disease. Clinical and Translational Immunology, 2018, 7, e1011.	1.7	23
103	Automated Workflow for Preparation of cDNA for Cap Analysis of Gene Expression on a Single Molecule Sequencer. PLoS ONE, 2012, 7, e30809.	1.1	22
104	Transcriptional Dynamics Reveal Critical Roles for Non-coding RNAs in the Immediate-Early Response. PLoS Computational Biology, 2015, 11, e1004217.	1.5	22
105	CCL2 enhances pluripotency of human induced pluripotent stem cells by activating hypoxia related genes. Scientific Reports, 2014, 4, 5228.	1.6	21
106	High-throughput transcription profiling identifies putative epigenetic regulators of hematopoiesis. Blood, 2014, 123, e46-e57.	0.6	21
107	A simple metric of promoter architecture robustly predicts expression breadth of human genes suggesting that most transcription factors are positive regulators. Genome Biology, 2014, 15, 413.	3.8	20
108	Brain-Enriched Coding and Long Non-coding RNA Genes Are Overrepresented in Recurrent Neurodevelopmental Disorder CNVs. Cell Reports, 2020, 33, 108307.	2.9	20

#	Article	IF	CITATIONS
109	Subcellular Localization of Mammalian Type II Membrane Proteins. Traffic, 2006, 7, 613-625.	1.3	19
110	PhosphoregDB: the tissue and sub-cellular distribution of mammalian protein kinases and phosphatases. BMC Bioinformatics, 2006, 7, 82.	1.2	18
111	Transcriptome analysis of periodontitis-associated fibroblasts by CAGE sequencing identified DLX5 and RUNX2 long variant as novel regulators involved in periodontitis. Scientific Reports, 2016, 6, 33666.	1.6	18
112	Building promoter aware transcriptional regulatory networks using siRNA perturbation and deepCAGE. Nucleic Acids Research, 2010, 38, 8141-8148.	6.5	17
113	CC Chemokine Ligand 2 and Leukemia Inhibitory Factor Cooperatively Promote Pluripotency in Mouse Induced Pluripotent Cells. Stem Cells, 2011, 29, 1196-1205.	1.4	17
114	Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines. BMC Genomics, 2014, 15, 120.	1.2	17
115	Expression Levels of Therapeutic Targets as Indicators of Sensitivity to Targeted Therapeutics. Molecular Cancer Therapeutics, 2019, 18, 2480-2489.	1.9	17
116	Shared activity patterns arising at genetic susceptibility loci reveal underlying genomic and cellular architecture of human disease. PLoS Computational Biology, 2018, 14, e1005934.	1.5	17
117	Exploration of the Cell-Cycle Genes Found Within the RIKEN FANTOM2 Data Set. Genome Research, 2003, 13, 1366-1375.	2.4	16
118	Regulatory interdependence of myeloid transcription factors revealed by Matrix RNAi analysis. Genome Biology, 2009, 10, R121.	13.9	16
119	Specific Mesothelial Signature Marks the Heterogeneity of Mesenchymal Stem Cells From High-Grade Serous Ovarian Cancer. Stem Cells, 2014, 32, 2998-3011.	1.4	16
120	DeepCAGE transcriptomics identify HOXD10 as transcription factor regulating lymphatic endothelial responses to VEGF-C. Journal of Cell Science, 2016, 129, 2573-85.	1.2	15
121	Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Frontiers in Immunology, 2020, 11, 1269.	2.2	14
122	Comprehensive Characterization of Transcriptional Activity during Influenza A Virus Infection Reveals Biases in Cap-Snatching of Host RNA Sequences. Journal of Virology, 2020, 94, .	1.5	14
123	The Evolution of Human Cells in Terms of Protein Innovation. Molecular Biology and Evolution, 2014, 31, 1364-1374.	3.5	13
124	Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Frontiers in Genetics, 2015, 6, 331.	1.1	13
125	CAGEd-oPOSSUM: motif enrichment analysis from CAGE-derived TSSs. Bioinformatics, 2016, 32, 2858-2860.	1.8	13
126	Conserved temporal ordering of promoter activation implicates common mechanisms governing the immediate early response across cell types and stimuli. Open Biology, 2018, 8, 180011.	1.5	13

#	Article	IF	CITATIONS
127	Identification of novel cerebellar developmental transcriptional regulators with motif activity analysis. BMC Genomics, 2019, 20, 718.	1.2	11
128	Myoglobinopathy is an adult-onset autosomal dominant myopathy with characteristic sarcoplasmic inclusions. Nature Communications, 2019, 10, 1396.	5.8	11
129	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network. Nature Communications, 2021, 12, 3297.	5.8	11
130	Intra- and intertumoral heterogeneity of liver metastases in a patient with uveal melanoma revealed by single-cell RNA sequencing. Journal of Physical Education and Sports Management, 2021, 7, a006111.	0.5	11
131	CAGE-defined promoter regions of the genes implicated in Rett Syndrome. BMC Genomics, 2014, 15, 1177.	1.2	10
132	Human genetics and genomics meetings going virtual: practical lessons learned from two international meetings in early 2020. Human Genomics, 2020, 14, 27.	1.4	8
133	MaxHiC: A robust background correction model to identify biologically relevant chromatin interactions in Hi-C and capture Hi-C experiments. PLoS Computational Biology, 2022, 18, e1010241.	1.5	7
134	Monitoring transcription initiation activities in rat and dog. Scientific Data, 2017, 4, 170173.	2.4	6
135	Discovery of Transcription Factors Novel to Mouse Cerebellar Granule Cell Development Through Laser-Capture Microdissection. Cerebellum, 2018, 17, 308-325.	1.4	6
136	Functional validation of variants of unknown significance using CRISPR gene editing and transcriptomics: A Kleefstra syndrome case study. Gene, 2022, 821, 146287.	1.0	6
137	Bi-allelic loss-of-function OBSCN variants predispose individuals to severe recurrent rhabdomyolysis. Brain, 2022, 145, 3985-3998.	3.7	6
138	Annotating non-coding transcription using functional genomics strategies. Briefings in Functional Genomics & Proteomics, 2009, 8, 437-443.	3.8	5
139	CAGExploreR: an R package for the analysis and visualization of promoter dynamics across multiple experiments. Bioinformatics, 2014, 30, 1183-1184.	1.8	5
140	An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man. Cell, 2010, 141, 369.	13.5	4
141	A Transcriptional Switch Point During Hematopoietic Stem and Progenitor Cell Ontogeny. Stem Cells and Development, 2017, 26, 314-327.	1.1	4
142	Transcription start site profiling of 15 anatomical regions of the Macaca mulatta central nervous system. Scientific Data, 2017, 4, 170163.	2.4	4
143	Improved CRISPR/Cas9 gene editing in primary human myoblasts using low confluency cultures on Matrigel. Skeletal Muscle, 2021, 11, 23.	1.9	4
144	Transcription Factor NKX6.3 Sheds Light on Gastric Cancer Progression. EBioMedicine, 2016, 9, 9-10.	2.7	2

#	Article	IF	CITATIONS
145	Application of Gene Expression Trajectories Initiated from ErbB Receptor Activation Highlights the Dynamics of Divergent Promoter Usage. PLoS ONE, 2015, 10, e0144176.	1.1	1
146	Deep sequencing blood transcriptomes. Blood, 2014, 123, 2595-2596.	0.6	0