
Francisco Klebson Gomes dos Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356309/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the Addition of Carnauba Wax on Physicochemical Properties of Chitosan Films. Materials Research, 2017, 20, 479-484.	1.3	27
2	Influence of the ionic and nonionic surfactants mixture in the structure and properties of the modified bentonite clay. Journal of Molecular Liquids, 2018, 272, 990-998.	4.9	21
3	Chitosan and graphene oxide-based biodegradable bags: An eco-friendly and effective packaging alternative to maintain postharvest quality of â€~Palmer' mango. LWT - Food Science and Technology, 2022, 154, 112741.	5.2	15
4	Synergistic effect of the sequential intercalation of three types of surfactants in the exfoliation degree of bentonite clay in films of cassava. Journal of Molecular Liquids, 2018, 266, 770-780.	4.9	13
5	Analysis of Water Barrier, Mechanical and Thermal Properties of Nanocoposites Based on Cassava Starch and Natural Clay or Modified by Anionic Exchange. Materials Research, 2017, 20, 69-76.	1.3	11
6	Extended shelf life of melons using chitosan and graphene oxideâ€based biodegradable bags. Journal of Food Processing and Preservation, 2020, 44, e14871.	2.0	11
7	Hydrophilicity, Solubility and Optical Properties in Composite Films of Gelatin and Bentonite Clay in its Natural Form or Modified. Materials Science Forum, 0, 912, 136-140.	0.3	5
8	Evaluation of Biopolimeric Films of Cassava Starch with Incorporation of Clay Modified by Ionic Exchange and its Application as a Coating in a Fruit. Materials Research, 2017, 20, 758-766.	1.3	4
9	Effect of Carnauba Wax and Coconut Fiber Contents on Tensile Properties of Corn Starch-Based Biocomposites. Materials Research, 2019, 22, .	1.3	2
10	Influence of Composition on Mechanical Properties of Cassava Starch, Sisal Fiber and Carnauba Wax Biocomposites. Materials Research, 2019, 22, .	1.3	2
11	Evaluation of adsortive potential of coconut mesocarp in the removal of reactive red dye 195 in aqueous effluents. Revista Materia, 2020, 25, .	0.2	2
12	Improvement of Thermal Stability of Cassava Starch Films from the Incorparation of Bentonite Clay. Materials Science Forum, 2019, 958, 69-73.	0.3	1
13	Filmes biopoliméricos baseados em fécula, quitosana e cera de carnaúba e suas propriedades. Revista Materia, 2020, 25, .	0.2	1
14	Adsorção de corante azul reativo BF-5G utilizando casca de Manihot Esculenta Crantz. Revista Materia, 2022, 27, .	0.2	1
15	Synthesis of the Perovskite-Type BaCe0.8Pr0.05Cu0.15O3-δvia EDTA-Citrate. Materials Research, 2017, 20, 447-451.	1.3	0
16	Structural, Morphological and Textural Features of EDTA-Citrate-Synthesized BaPrO ₃ Perovskite-Type Oxide. Materials Science Forum, 2018, 912, 50-54.	0.3	0
17	Increase of the Elastic Modulus of Cassava Starch Films with Modified Clay through Factorial Planning. Materials Science Forum, 0, 958, 81-86.	0.3	0
18	Synthesis of NiMoO4 by the Complexation Method Combining EDTA-Citrate and its Behavior Against Biodiesel Acidity. Materials Research, 2021, 24, .	1.3	0

#	Article	IF	CITATIONS
19	INFLUÊNCIA DA RAZÃO C/T E SALINIDADE DA FASE AQUOSA EM SISTEMAS MICROEMULSIONADOS COM OCS-BUTANOL-ÃGUA-QUEROSENE. Holos, 0, 4, 235.	0.0	Ο
20	ResÃduo agrÃcola de bagaço de caju como adsorvente na remoção de tolueno da mistura óleo e água. Revista Verde De Agroecologia E Desenvolvimento Sustentável, 2020, 15, 178-182.	0.1	0
21	Effect of thermal parameters and pH on obtaining copper ferrite via EDTA-Citrate complexation method. Revista Materia, 2021, 26, .	0.2	0