Remedios YÃ;ñez DÃ-az

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9356299/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparative Assessment on the Recovery of Pectin and Phenolic Fractions from Aqueous and DES Extracts Obtained from Melon Peels. Food and Bioprocess Technology, 2022, 15, 1406-1421.	4.7	8
2	Recovery of High Value-Added Compounds from Food By-Product. Foods, 2022, 11, 1670.	4.3	1
3	Recent advances to recover value-added compounds from avocado by-products following a biorefinery approach. Current Opinion in Green and Sustainable Chemistry, 2021, 28, 100433.	5.9	20
4	Exploiting the Potential of Bioactive Molecules Extracted by Ultrasounds from Avocado Peels—Food and Nutraceutical Applications. Antioxidants, 2021, 10, 1475.	5.1	18
5	Integral valorization of Acacia dealbata wood in organic medium catalyzed by an acidic ionic liquid. Bioresource Technology, 2021, 342, 126013.	9.6	7
6	Identification and Recovery of Valuable Bioactive Compounds from Potato Peels: A Comprehensive Review. Antioxidants, 2021, 10, 1630.	5.1	26
7	Application of an eco-friendly sodium acetate/urea deep eutectic solvent in the valorization of melon by-products. Food and Bioproducts Processing, 2021, 130, 216-228.	3.6	13
8	Environmentally Friendly Hydrothermal Processing of Melon by-Products for the Recovery of Bioactive Pectic-Oligosaccharides. Foods, 2020, 9, 1702.	4.3	19
9	Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 2020, 132, 109086.	6.2	117
10	Valorization of Eucalyptus nitens bark by organosolv pretreatment for the production of advanced biofuels. Industrial Crops and Products, 2019, 132, 327-335.	5.2	59
11	Modelling the isothermal degradation kinetics of metrafenone and mepanipyrim in a grape juice analog. Food Research International, 2018, 108, 339-346.	6.2	5
12	Valorization of peanut shells: Manufacture of bioactive oligosaccharides. Carbohydrate Polymers, 2018, 183, 21-28.	10.2	64
13	Manufacture and Properties of Glucomannans and Glucomannooligosaccharides Derived from Konjac and Other Sources. Journal of Agricultural and Food Chemistry, 2017, 65, 2019-2031.	5.2	37
14	Extraction of Oligosaccharides With Prebiotic Properties From Agro-Industrial Wastes. , 2017, , 131-161.		3
15	Production and Emerging Applications of Bioactive Oligosaccharides from Biomass Hemicelluloses by Hydrothermal Processing. , 2017, , 253-283.		8
16	Kinetics of 5-hydroxymethylfurfural production from monosaccharides in media containing an ionic liquid and a solid acid catalyst. BioResources, 2017, 12, 8402-8418.	1.0	9
17	Kinetic modelling of mancozeb hydrolysis and photolysis to ethylenethiourea and other by-products in water. Water Research, 2016, 102, 561-571.	11.3	16
18	Assessment of the prebiotic effect of quinoa and amaranth in the human intestinal ecosystem. Food and Function, 2016, 7, 3782-3788.	4.6	41

Remedios YÃiñez DÃaz

#	Article	IF	CITATIONS
19	Production of pectinâ€derived oligosaccharides from lemon peels by extraction, enzymatic hydrolysis and membrane filtration. Journal of Chemical Technology and Biotechnology, 2016, 91, 234-247.	3.2	34
20	Prebiotic potential of pectins and pectic oligosaccharides derived from lemon peel wastes and sugar beet pulp: A comparative evaluation. Journal of Functional Foods, 2016, 20, 108-121.	3.4	225
21	Environmentally friendly technologies for obtaining high sugars concentrations from invasive woody species. AIMS Environmental Science, 2015, 2, 884-898.	1.4	0
22	Valorization of an invasive woody species, <i>Acacia dealbata</i> , by means of Ionic liquid pretreatment and enzymatic hydrolysis. Journal of Chemical Technology and Biotechnology, 2014, 89, 1337-1343.	3.2	18
23	A biorefinery approach based on fractionation with a cheap industrial by-product for getting value from an invasive woody species. Bioresource Technology, 2014, 173, 301-308.	9.6	13
24	Pectic Oligosacharides from Lemon Peel Wastes: Production, Purification, and Chemical Characterization. Journal of Agricultural and Food Chemistry, 2013, 61, 10043-10053.	5.2	73
25	Pectic oligosaccharides: Manufacture and functional properties. Trends in Food Science and Technology, 2013, 30, 153-161.	15.1	187
26	Neural Models for Optimizing Lignocellulosic Residues Composting Process. Waste and Biomass Valorization, 2012, 3, 319-331.	3.4	9
27	Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. International Journal of Food Science and Technology, 2012, 47, 747-754.	2.7	52
28	Biorefinery processes for the integral valorization of agroindustrial and forestal wastes Procesos de biorrefinerÃa para la valorizaciA³n integral de residuos agroindustriales y forestales. CYTA - Journal of Food, 2011, 9, 282-289.	1.9	21
29	Kinetic assessment on the autohydrolysis of pectin-rich by-products. Chemical Engineering Journal, 2010, 162, 480-486.	12.7	31
30	Production of oligosaccharides and sugars from rye straw: A kinetic approach. Bioresource Technology, 2010, 101, 6676-6684.	9.6	89
31	Selective organic compounds degradation under controlling composting conditions. Waste Management, 2010, 30, 755-763.	7.4	11
32	Chemical Production of Pectic Oligosaccharides from Orange Peel Wastes. Industrial & Engineering Chemistry Research, 2010, 49, 8470-8476.	3.7	54
33	Experimental evaluation of alkaline treatment as a method for enhancing the enzymatic digestibility of autohydrolysed <i>Acacia dealbata</i> . Journal of Chemical Technology and Biotechnology, 2009, 84, 1070-1077.	3.2	24
34	Valorisation of a leguminous specie, Sesbania grandiflora, by means of hydrothermal fractionation. Bioresource Technology, 2009, 100, 6514-6523.	9.6	17
35	Integral valorization of two legumes by autohydrolysis and organosolv delignification. Bioresource Technology, 2009, 100, 440-445.	9.6	41
36	Influence of bulking agent on sewage sludge composting process. Bioresource Technology, 2009, 100, 5827-5833.	9.6	84

Remedios YÃiñez DÃaz

#	Article	IF	CITATIONS
37	Modelling of parameters for optimization of maturity in composting trimming residues. Bioresource Technology, 2009, 100, 5859-5864.	9.6	10
38	Processing of <i>Acacia dealbata</i> in Aqueous Media: First Step of a Wood Biorefinery. Industrial & Engineering Chemistry Research, 2009, 48, 6618-6626.	3.7	51
39	Direct Enzymatic Production of Oligosaccharide Mixtures from Sugar Beet Pulp: Experimental Evaluation and Mathematical Modeling. Journal of Agricultural and Food Chemistry, 2009, 57, 5510-5517.	5.2	36
40	Optimization of the Methylation Conditions of Kraft Cellulose Pulp for Its Use As a Thickener Agent in Biodegradable Lubricating Greases. Industrial & Engineering Chemistry Research, 2009, 48, 6765-6771.	3.7	24
41	Evaluating Environmental Parameters for Minimum Ammonium Losses during Composting of Trimming Residues. Journal of the Air and Waste Management Association, 2009, 59, 790-800.	1.9	3
42	The effect of acid stress on lactate production and growth kinetics in Lactobacillus rhamnosus cultures. Process Biochemistry, 2008, 43, 356-361.	3.7	36
43	SSF production of lactic acid from cellulosic biosludges. Bioresource Technology, 2008, 99, 4247-4254.	9.6	62
44	Leucaena species valoration for biomass and paper production in 1 and 2 year harvest. Bioresource Technology, 2008, 99, 4846-4853.	9.6	43
45	l-Lactic acid production from apple pomace by sequential hydrolysis and fermentation. Bioresource Technology, 2008, 99, 308-319.	9.6	114
46	Coproduction of Oligosaccharides and Glucose from Corncobs by Hydrothermal Processing and Enzymatic Hydrolysis. Industrial & amp; Engineering Chemistry Research, 2008, 47, 1336-1345.	3.7	55
47	Influence of Environmental Parameters on the Composting Kinetic of Lignocellulosic Residues. Compost Science and Utilization, 2008, 16, 132-138.	1.2	3
48	Sugar production from cellulosic biosludges generated in a water treatment plant of a Kraft pulp mill. Biochemical Engineering Journal, 2007, 37, 319-327.	3.6	10
49	Enzymatic saccharification of hydrogen peroxide-treated solids from hydrothermal processing of rice husks. Process Biochemistry, 2006, 41, 1244-1252.	3.7	30
50	D-Lactic acid production from waste cardboard. Journal of Chemical Technology and Biotechnology, 2005, 80, 76-84.	3.2	58
51	Production of hemicellulosic sugars and glucose from residual corrugated cardboard. Process Biochemistry, 2004, 39, 1543-1551.	3.7	41
52	Production of D(-)-lactic acid from cellulose by simultaneous saccharification and fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 2003, 25, 1161-1164.	2.2	79
53	Totally Chlorine Free Bleaching of Organosolv Pulps. Journal of Wood Chemistry and Technology, 2003, 23, 161-178.	1.7	6