Xiao-Song Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355952/publications.pdf

Version: 2024-02-01

114418 76294 4,567 109 40 63 citations h-index g-index papers 122 122 122 4427 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Near-Infrared Afterglow Luminescent Aggregation-Induced Emission Dots with Ultrahigh Tumor-to-Liver Signal Ratio for Promoted Image-Guided Cancer Surgery. Nano Letters, 2019, 19, 318-330.	4.5	385
2	The Essential Role of Bond Energetics in C–H Activation/Functionalization. Chemical Reviews, 2017, 117, 8622-8648.	23.0	369
3	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie - International Edition, 2016, 55, 1460-1464.	7.2	202
4	Metal-free directed sp2-C–H borylation. Nature, 2019, 575, 336-340.	13.7	175
5	<i>N</i> -Trifluoromethylthio-dibenzenesulfonimide: A Shelf-Stable, Broadly Applicable Electrophilic Trifluoromethylthiolating Reagent. Journal of Organic Chemistry, 2016, 81, 7486-7509.	1.7	160
6	Controllable catalytic difluorocarbene transfer enables access to diversified fluoroalkylated arenes. Nature Chemistry, 2019, 11, 948-956.	6.6	125
7	Theoretical Study on the Acidities of Chiral Phosphoric Acids in Dimethyl Sulfoxide: Hints for Organocatalysis. Journal of Organic Chemistry, 2013, 78, 7076-7085.	1.7	106
8	Mechanism and Origins of Chemo- and Stereoselectivities of Aryl Iodide-Catalyzed Asymmetric Difluorinations of \hat{l}^2 -Substituted Styrenes. Journal of the American Chemical Society, 2018, 140, 15206-15218.	6.6	89
9	Expanding the Frontiers of Higher-Order Cycloadditions. Accounts of Chemical Research, 2019, 52, 3488-3501.	7.6	83
10	Quantitative Scale for the Trifluoromethylthio Cation-Donating Ability of Electrophilic Trifluoromethylthiolating Reagents. Organic Letters, 2016, 18, 264-267.	2.4	77
11	Computational Study on the Acidic Constants of Chiral BrÃ,nsted Acids in Dimethyl Sulfoxide. Journal of Organic Chemistry, 2014, 79, 4340-4351.	1.7	76
12	Enantioselective Organocatalyzed Sulfenylation of 3-Substituted Oxindoles. Organic Letters, 2012, 14, 4374-4377.	2.4	74
13	Nickel-catalyzed intermolecular oxidative Heck arylation driven by transfer hydrogenation. Nature Communications, 2019, 10, 5025.	5.8	73
14	Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angewandte Chemie - International Edition, 2020, 59, 8195-8202.	7.2	71
15	Establishing Cation and Radical Donor Ability Scales of Electrophilic F, CF ₃ , and SCF ₃ Transfer Reagents. Accounts of Chemical Research, 2020, 53, 182-197.	7.6	70
16	Mechanism and Selectivity of Bioinspired Cinchona Alkaloid Derivatives Catalyzed Asymmetric Olefin Isomerization: A Computational Study. Journal of the American Chemical Society, 2013, 135, 7462-7473.	6.6	69
17	Selective Tuning of the HOMO–LUMO Gap of Carbazoleâ€Based Donor–Acceptor–Donor Compounds toward Different Emission Colors. European Journal of Organic Chemistry, 2010, 2010, 1681-1687.	1.2	68
18	Sulfimineâ€Promoted Fast O Transfer: One–step Synthesis of Sulfoximine from Sulfide. ChemistrySelect, 2017, 2, 1620-1624.	0.7	64

#	Article	IF	CITATIONS
19	Rhodium-Catalyzed 2-Arylphenol-Derived Six-Membered Silacyclization: Straightforward Access toward Dibenzooxasilines and Silicon-Containing Planar Chiral Metallocenes. ACS Catalysis, 2018, 8, 7997-8005.	5 . 5	64
20	Open-Shell Fluorination of Alkyl Bromides: Unexpected Selectivity in a Silyl Radical-Mediated Chain Process. Journal of the American Chemical Society, 2019, 141, 20031-20036.	6.6	63
21	Mechanism of Silver-Mediated Geminal Difluorination of Styrenes with a Fluoroiodane Reagent: Insights into Lewis-Acid-Activation Model. Organic Letters, 2016, 18, 6128-6131.	2.4	59
22	Chiral Spiro Phosphoric Acid-Catalyzed Friedel–Crafts Conjugate Addition/Enantioselective Protonation Reactions. ACS Catalysis, 2019, 9, 6522-6529.	5.5	58
23	Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids. Nature Communications, 2022, 13, 10.	5.8	58
24	Asymmetric Michael addition reactions of 3-substituted benzofuran-2(3H)-ones to nitroolefins catalyzed by a bifunctional tertiary-amine thiourea. Organic and Biomolecular Chemistry, 2012, 10, 413-420.	1.5	57
25	Mild Ringâ€Opening 1,3â€Hydroborations of Nonâ€Activated Cyclopropanes. Angewandte Chemie - International Edition, 2018, 57, 16861-16865.	7.2	52
26	Mechanism and Origins of Enantioselectivities in Spirobiindane-Based Hypervalent Iodine(III)-Induced Asymmetric Dearomatizing Spirolactonizations. Journal of the American Chemical Society, 2019, 141, 16046-16056.	6.6	52
27	Ambimodal Trispericyclic Transition State and Dynamic Control of Periselectivity. Journal of the American Chemical Society, 2019, 141, 1217-1221.	6.6	51
28	Comprehensive Energetic Scale for Quantitatively Estimating the Fluorinating Potential of N–F Reagents in Electrophilic Fluorinations. Journal of Organic Chemistry, 2016, 81, 4280-4289.	1.7	50
29	Synthesis of Optically Enriched Spirocyclic Benzofuranâ€2â€ones by Bifunctional Thioureaâ€Base Catalyzed Doubleâ€Michael Addition of Benzofuranâ€2â€ones to Dienones. Chemistry - an Asian Journal, 2013, 8, 997-1003.	1.7	48
30	An Energetic Guide for Estimating Trifluoromethyl Cation Donor Abilities of Electrophilic Trifluoromethylating Reagents: Computations of X–CF ₃ Bond Heterolytic Dissociation Enthalpies. Journal of Organic Chemistry, 2016, 81, 3119-3126.	1.7	48
31	Exploration of the Synthetic Potential of Electrophilic Trifluoromethylthiolating and Difluoromethylthiolating Reagents. Angewandte Chemie - International Edition, 2018, 57, 12690-12695.	7.2	48
32	A Computational Reinvestigation of the Formation of <i>N</i> -Alkylpyrroles via Intermolecular Redox Amination. Organic Letters, 2011, 13, 6054-6057.	2.4	47
33	Phosphoric Acid Catalyzed Asymmetric 1,6â€Conjugate Addition of Thioacetic Acid to <i>para</i> â€Quinone Methides. Angewandte Chemie, 2016, 128, 1482-1486.	1.6	47
34	Catalytic Enantioselective Cyclopropenation of Internal Alkynes: Access to Difluoromethylated Threeâ€Membered Carbocycles. Angewandte Chemie - International Edition, 2019, 58, 18191-18196.	7.2	47
35	Highly γâ€Selective Arylation and Carbonylative Arylation of 3â€Bromoâ€3,3â€difluoropropene via Nickel Catalysis. Angewandte Chemie - International Edition, 2021, 60, 12386-12391.	7.2	47
36	High Site Selectivity in Electrophilic Aromatic Substitutions: Mechanism of C–H Thianthrenation. Journal of the American Chemical Society, 2021, 143, 16041-16054.	6.6	47

#	Article	IF	CITATIONS
37	Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature, 2021, 597, 64-69.	13.7	46
38	Mechanism and Origin of the Unexpected Chemoselectivity in Fluorocyclization of <i>o</i> Styryl Benzamides with a Hypervalent Fluoroiodane Reagent. Journal of Organic Chemistry, 2016, 81, 9006-9011.	1.7	45
39	Ordering the relative power of electrophilic fluorinating, trifluoromethylating, and trifluoromethylthiolating reagents: A summary of recent efforts. Tetrahedron Letters, 2018, 59, 1278-1285.	0.7	44
40	Recent Advances and Advisable Applications of Bond Energetics in Organic Chemistry. Journal of the American Chemical Society, 2018, 140, 8611-8623.	6.6	44
41	Mechanisms and Dynamics of Reactions Involving Entropic Intermediates. Trends in Chemistry, 2019, 1, 22-34.	4.4	44
42	A ring expansion strategy towards diverse azaheterocycles. Nature Chemistry, 2021, 13, 1006-1016.	6.6	41
43	Asymmetric Michael Addition Reactions between 3â€Substituted Benzofuranâ€2(3 <i>H</i>)â€ones and 1,1â€Bis(phenylsulfonyl)ethylene Catalyzed by Bifunctional Catalysts Containing Tertiary Amine and Thiourea Groups. European Journal of Organic Chemistry, 2012, 2012, 1774-1782.	1.2	40
44	A Systematic Evaluation of the N–F Bond Strength of Electrophilic N–F Reagents: Hints for Atomic Fluorine Donating Ability. Journal of Organic Chemistry, 2017, 82, 4129-4135.	1.7	40
45	Carbonâ€Selective Difluoromethylation of Soft Carbon Nucleophiles with Difluoromethylated Sulfonium Ylide. Chinese Journal of Chemistry, 2018, 36, 1069-1074.	2.6	37
46	Origin of Stereoselectivity of the Photoinduced Asymmetric Phase-Transfer-Catalyzed Perfluoroalkylation of Î ² -Ketoesters. Journal of Organic Chemistry, 2017, 82, 9321-9327.	1.7	36
47	Mechanism and Origins of Stereoinduction in Natural Cinchona Alkaloid Catalyzed Asymmetric Electrophilic Trifluoromethylthiolation of \hat{l}^2 -Keto Esters with $\langle i \rangle N \langle i \rangle$ -Trifluoromethylthiophthalimide as Electrophilic SCF $\langle sub \rangle 3 \langle sub \rangle$ Source. ACS Catalysis, 2017, 7, 7977-7986.	5.5	35
48	Theoretical study of Lewis acid activation models for hypervalent fluoroiodane reagent: The generality of "F-coordination―activation model. Tetrahedron Letters, 2017, 58, 1287-1291.	0.7	32
49	Acidity Scale of N-Heterocyclic Carbene Precursors: Can We Predict the Stability of NHC–CO2 Adducts?. Organic Letters, 2018, 20, 6041-6045.	2.4	32
50	Establishing the Trifluoromethylthio Radical Donating Abilities of Electrophilic SCF ₃ -Transfer Reagents. Journal of Organic Chemistry, 2017, 82, 8697-8702.	1.7	29
51	Computational Study on the p <i>K</i> _a Shifts in Proline Induced by Hydrogen-Bond-Donating Cocatalysts. Journal of Organic Chemistry, 2014, 79, 1166-1173.	1.7	27
52	Chemodivergent and Stereoselective Construction of <i>gem</i> -Difluoroallylic Amines from Masked Difluorodiazo Reagents. Organic Letters, 2019, 21, 8244-8249.	2.4	27
53	Enantioselective Synthesis of Planarâ€Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
54	A Systematic Assessment of Trifluoromethyl Radical Donor Abilities of Electrophilic Trifluoromethylating Reagents. Asian Journal of Organic Chemistry, 2017, 6, 235-240.	1.3	26

#	Article	IF	Citations
55	<i>N</i> - <i>tert</i> -Sutyl Sulfinyl Squaramide Receptors for Anion Recognition through Assisted- <i>tert</i> -Butyl Câ€"H Hydrogen Bonding. Journal of Organic Chemistry, 2017, 82, 8662-8667.	1.7	26
56	Computational I(III)â€"X BDEs for Benziodoxol(on)eâ€based Hypervalent Iodine Reagents: Implications for Their Functional Group Transfer Abilities. Chinese Journal of Chemistry, 2019, 37, 359-363.	2.6	24
57	Radical-mediated C-C cleavage of unstrained cycloketones and DFT study for unusual regioselectivity. Nature Communications, 2020, 11, 672.	5.8	24
58	Cooperative Stapling of Native Peptides at Lysine and Tyrosine or Arginine with Formaldehyde. Angewandte Chemie - International Edition, 2021, 60, 6646-6652.	7.2	24
59	[8+2] vs [4+2] Cycloadditions of Cyclohexadienamines to Tropone and Heptafulvenes—Mechanisms and Selectivities. Journal of the American Chemical Society, 2021, 143, 934-944.	6.6	23
60	A Highly Efficient Chirality Switchable Synthesis of Dihydropyranâ€Fused Benzofurans by Fineâ€Tuning the Phenolic Proton of βâ€Isocupreidine (βâ€ICD) Catalyst with Methyl. Chemistry - A European Journal, 2015, 21, 10443-10449.	1.7	22
61	Radical C–H Arylation of Oxazoles with Aryl Iodides: dppf as an Electron-Transfer Mediator for Cs ₂ CO ₃ . Organic Letters, 2018, 20, 1684-1687.	2.4	22
62	Internal Alkyne-Directed Fluorination of Unactivated C(sp ³)–H Bonds. Organic Letters, 2020, 22, 9398-9403.	2.4	22
63	A Systematic Theoretical Study on the Acidities for Cations of Ionic Liquids in Dimethyl Sulfoxide. Journal of Physical Chemistry A, 2018, 122, 5750-5755.	1.1	20
64	Toward Prediction of the Chemistry in Ionic Liquids: An Accurate Computation of Absolute p <i>K</i> _a Values of Benzoic Acids and Benzenethiols. Journal of Organic Chemistry, 2015, 80, 8997-9006.	1.7	19
65	Computational Exploration of the Mechanism of Critical Steps in the Biomimetic Synthesis of Preuisolactone A, and Discovery of New Ambimodal $(5 + 2)/(4 + 2)$ Cycloadditions. Journal of the American Chemical Society, 2021, 143, 6601-6608.	6.6	19
66	Design and Applications of <i>N</i> - <i>tert</i> -Butyl Sulfinyl Squaramide Catalysts. Organic Letters, 2017, 19, 1926-1929.	2.4	18
67	Visible-Light-Driven Neutral Nitrogen Radical Mediated Intermolecular Styrene Difunctionalization. Organic Letters, 2019, 21, 3861-3865.	2.4	18
68	Comprehensive Basicity Scales for Nâ€Heterocyclic Carbenes in DMSO: Implications on the Stabilities of Nâ€Heterocyclic Carbene and CO 2 Adducts. Chemistry - an Asian Journal, 2020, 15, 169-181.	1.7	18
69	Potassium Acetate-Catalyzed Double Decarboxylative Transannulation To Access Highly Functionalized Pyrroles. Organic Letters, 2020, 22, 9585-9590.	2.4	16
70	The Brönsted Basicities of N-Heterocyclic Olefins in DMSO: An Effective Way to Evaluate the Stability of NHO–CO ₂ Adducts. Journal of Organic Chemistry, 2020, 85, 13204-13210.	1.7	16
71	Polarity Umpolung Strategy for the Radical Alkylation of Alkenes. Angewandte Chemie, 2020, 132, 8272-8279.	1.6	16
72	Hypervalent-lodine-Mediated Formation of Epoxides from Carbon(sp ²)–Carbon(sp ³) Single Bonds. Journal of Organic Chemistry, 2017, 82, 11691-11702.	1.7	15

#	Article	IF	Citations
73	Catalytic Direct Construction of Cyano-tetrazoles. Organic Letters, 2020, 22, 7762-7767.	2.4	15
74	Violations. How Nature Circumvents the Woodward–Hoffmann Rules and Promotes the Forbidden Conrotatory 4 <i>n</i> + 2 Electron Electrocyclization of Prinzbach's Vinylogous Sesquifulvalene. Journal of the American Chemical Society, 2021, 143, 21694-21704.	6.6	14
75	Chiral Lewis Base Catalyzed Enantioselective Selenocyclization of 1,1-Disubstituted Alkenes: Asymmetric Synthesis of Selenium-Containing 4 <i>H</i> -3,1-Benzoxazines. Organic Letters, 2022, 24, 4093-4098.	2.4	14
76	Transition-Metal-Free <i>ipso</i> -Trifluoromethylthiolation of Lithium Aryl Boronates. Organic Letters, 2019, 21, 6347-6351.	2.4	13
77	The Acidities of Nucleophilic Monofluoromethylation Reagents: An Anomalous αâ€Fluorine Effect. Angewandte Chemie - International Edition, 2021, 60, 9401-9406.	7.2	13
78	Metalâ€Free Câ^'H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
79	Organic radicals based on phenalenyl and verdazyl units. Tetrahedron Letters, 2011, 52, 3670-3673.	0.7	11
80	Origin of Stereocontrol in Photoredox Organocatalysis of Asymmetric \hat{l}_{\pm} -Functionalizations of Aldehydes. Journal of Organic Chemistry, 2018, 83, 3333-3338.	1.7	11
81	Solvent-controlled photocatalytic divergent cyclization of alkynyl aldehydes: access to cyclopentenones and dihydropyranols. Chemical Science, 2021, 12, 11420-11426.	3.7	11
82	Quantification of the Activation Capabilities of Lewis/Brønsted Acid for Electrophilic Trifluoromethylthiolating Reagents ^{â€} . Chinese Journal of Chemistry, 2020, 38, 130-134.	2.6	10
83	Ligand-Dependent Regiodivergent Enantioselective Allylic Alkylations of α-Trifluoromethylated Ketones. Organic Letters, 2021, 23, 2443-2448.	2.4	10
84	Neutral <scp>Fiveâ€Coordinate</scp> Arylated Copper(<scp>III</scp>) Complex: Key Intermediate in <scp>Copperâ€Mediated</scp> Arene Trifluoromethylation. Chinese Journal of Chemistry, 2022, 40, 1924-1930.	2.6	10
85	The effects of insertion of nitrogen atoms on the aromatic nitrogenâ€containing compounds: a potential approach for designing stable radical molecular materials. Journal of Physical Organic Chemistry, 2012, 25, 92-100.	0.9	9
86	Exploration of the Synthetic Potential of Electrophilic Trifluoromethylthiolating and Difluoromethylthiolating Reagents. Angewandte Chemie, 2018, 130, 12872-12877.	1.6	9
87	Computations on Pericyclic Reactions Reveal the Richness of Ambimodal Transition States and Pericyclases. Israel Journal of Chemistry, 2022, 62, .	1.0	9
88	Construction of Complex Macromulticyclic Peptides via Stitching with Formaldehyde and Guanidine. Journal of the American Chemical Society, 2022, 144, 10080-10090.	6.6	9
89	Ambimodal Transition States in Diels–Alder Cycloadditions of Tropolone and Tropolonate with <i>N</i> â€Methylmaleimide**. Angewandte Chemie - International Edition, 2021, 60, 24991-24996.	7.2	8
90	2,6-Azulene-based Homopolymers: Design, Synthesis, and Application in Proton Exchange Membrane Fuel Cells. ACS Macro Letters, 2022, 11, 680-686.	2.3	8

#	Article	IF	Citations
91	Biomimetic Total Synthesis of $(\hat{A}\pm)$ -Carbocyclinone-534 Reveals Its Biosynthetic Pathway. Organic Letters, 2020, 22, 9421-9426.	2.4	7
92	Recent Computational Studies on Mechanisms of Hypervalent Iodine(III)-Promoted Dearomatization of Phenols. Current Organic Chemistry, 2020, 24, 2106-2117.	0.9	7
93	Harnessing Natural Products by a Pharmacophoreâ€Oriented Semisynthesis Approach for the Discovery of Potential Antiâ€SARSâ€CoVâ€2 Agents. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
94	Factors Controlling Reactivity in the Hydrogen Atom Transfer and Radical Addition Steps of a Radical Relay Cascade. Organic Letters, 2019, 21, 5894-5897.	2.4	6
95	Mechanism and Selectivity of N-Heterocyclic Carbene-Catalyzed Desymmetrizing [4+1] and [4+2] Annulations. Chinese Journal of Organic Chemistry, 2021, 41, 2530.	0.6	6
96	Computational Study of the Trifluoromethyl Radical Donor Abilities of CF ₃ Sources. Acta Chimica Sinica, 2018, 76, 988.	0.5	6
97	Computation of standard equilibrium acidity of C–H acids in ionic media: shedding light on predicting changes of chemical behavior by switching solvent system from molecular to ionic. Organic Chemistry Frontiers, 2014, 1, 176.	2.3	5
98	Origins of Selectivities in the Stork Diels–Alder Cycloaddition for the Synthesis of (±)-4-Methylenegermine. Organic Letters, 2018, 20, 6108-6111.	2.4	4
99	Azetidine synthesis enabled by photo-induced copper catalysis via [3+1] radical cascade cyclization. Innovation(China), 2022, 3, 100244.	5.2	4
100	2,5,8-Tri-tert-butyl-1,3,4,6,7,9-hexaazaphenalene: Synthesis, Crystal Structure and Calculation of Homolytic N–H Bond Dissociation Enthalpies. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2008, 63, 1425-1430.	0.3	3
101	Theoretical Study of the Peripheral Disulfide Bridge Substituent Effects on the Antioxidant Properties of Naphthyridine Diol Derivatives. Journal of Physical Chemistry A, 2010, 114, 1008-1016.	1.1	3
102	Enantioselective Synthesis of Planarâ€Chiral Macrocycles through Asymmetric Electrophilic Aromatic Amination. Angewandte Chemie, 0, , .	1.6	3
103	The Acidities of Nucleophilic Monofluoromethylation Reagents: An Anomalous αâ€Fluorine Effect. Angewandte Chemie, 2021, 133, 9487-9492.	1.6	2
104	Ambimodal Transition States in Dielsâ^'Alder Cycloadditions of Tropolone and Tropolonate with Nâ€Methylmaleimide. Angewandte Chemie, 2021, 133, 25195.	1.6	2
105	Mechanistic Study on the Bidentate Nitrogen-Ligated Iodine(V) Reagent Promoted Oxidative Dearomatization of Phenols. Acta Chimica Sinica, 2021, 79, 1394.	0.5	2
106	Metalâ€Free Câ€H Functionalization via Diaryliodonium Salts with a Chemically Robust Dummy Ligand. Angewandte Chemie, 0, , .	1.6	2
107	The rearrangement of 2-(1,6-methano[10]annulenyl)-3,3-dimethylmethylenecyclopropane: A computational study. Computational and Theoretical Chemistry, 2010, 950, 1-4.	1.5	1
108	Efficient synthesis of isoindolones by intramolecular cyclisation of pyridinylbenzoic acids. Organic and Biomolecular Chemistry, 2021, 19, 8025-8029.	1.5	1

#	Article	IF	CITATIONS
109	Computational insights into the effects of reagent structure and bases on nucleophilic monofluoromethylation of aldehydes. Chinese Chemical Letters, 2021, , .	4.8	1