
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/935553/publications.pdf Version: 2024-02-01

SARA NICOLI

#	Article	IF	CITATIONS
1	Development and validation of a HPLC–UV based method for the extraction and quantification of methotrexate in the skin. Biomedical Chromatography, 2022, , e5349.	1.7	1
2	Validation of a HPLC-UV method for the quantification of budesonide in skin layers. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2021, 1164, 122512.	2.3	24
3	Lipid-Based Nanocarriers for Ophthalmic Administration: Towards Experimental Design Implementation. Pharmaceutics, 2021, 13, 447.	4.5	30
4	Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. Journal of Controlled Release, 2021, 332, 312-336.	9.9	429
5	Preliminary Investigation on Simvastatin-Loaded Polymeric Micelles in View of the Treatment of the Back of the Eye. Pharmaceutics, 2021, 13, 855.	4.5	7
6	Improvement of Imiquimod Solubilization and Skin Retention via TPGS Micelles: Exploiting the Co-Solubilizing Effect of Oleic Acid. Pharmaceutics, 2021, 13, 1476.	4.5	14
7	Synthesis and Ex Vivo Trans-Corneal Permeation of Penetratin Analogues as Ophthalmic Carriers: Preliminary Results. Pharmaceutics, 2020, 12, 728.	4.5	4
8	In Vitro Skin Retention of Crisaborole after Topical Application. Pharmaceutics, 2020, 12, 491.	4.5	17
9	Development and validation of a simple method for the extraction and quantification of crisaborole in skin layers. Biomedical Chromatography, 2019, 33, e4664.	1.7	3
10	Ex Vivo Conjunctival Retention and Transconjunctival Transport of Poorly Soluble Drugs Using Polymeric Micelles. Pharmaceutics, 2019, 11, 476.	4.5	20
11	The role of vehicle metamorphosis on triamcinolone acetonide delivery to the skin from microemulsions. International Journal of Pharmaceutics, 2019, 565, 33-40.	5.2	7
12	Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics. Expert Opinion on Drug Delivery, 2019, 16, 397-413.	5.0	57
13	Skin Retention of Sorbates from an After Sun Formulation for a Broad Photoprotection. Cosmetics, 2019, 6, 14.	3.3	2
14	Thin polymeric films for the topical delivery of propranolol. Colloids and Surfaces B: Biointerfaces, 2019, 174, 582-586.	5.0	16
15	Microemulsion containing triamcinolone acetonide for buccal administration. European Journal of Pharmaceutical Sciences, 2018, 115, 233-239.	4.0	28
16	Development of microemulsions of suitable viscosity for cyclosporine skin delivery. International Journal of Pharmaceutics, 2018, 545, 197-205.	5.2	47
17	Generic patches containing fentanyl: In vitro equivalence and abuse deterrent evaluation according to EMA and FDA guidelines. International Journal of Pharmaceutics, 2018, 537, 57-63.	5.2	5
18	Poloxamer 407/TPGS Mixed Micelles as Promising Carriers for Cyclosporine Ocular Delivery. Molecular Pharmaceutics, 2018, 15, 571-584.	4.6	99

#	Article	IF	CITATIONS
19	Microemulsions based on TPGS and isostearic acid for imiquimod formulation and skin delivery. European Journal of Pharmaceutical Sciences, 2018, 125, 223-231.	4.0	21
20	New Insights on the Mechanism of Fatty Acids as Buccal Permeation Enhancers. Pharmaceutics, 2018, 10, 201.	4.5	25
21	Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting. Pharmaceutics, 2018, 10, 34.	4.5	206
22	The Influence of Formulation and Excipients on Propranolol Skin Permeation and Retention. BioMed Research International, 2018, 2018, 1-7.	1.9	8
23	Cyclosporine-loaded cross-linked inserts of sodium hyaluronan and hydroxypropyl-β-cyclodextrin for ocular administration. Carbohydrate Polymers, 2018, 201, 308-316.	10.2	34
24	Cell penetrating peptides in ocular drug delivery: State of the art. Journal of Controlled Release, 2018, 284, 84-102.	9.9	84
25	Parameters affecting the transscleral delivery of two positively charged proteins of comparable size. International Journal of Pharmaceutics, 2017, 521, 214-221.	5.2	7
26	Mydriatics release from solid and semi-solid ophthalmic formulations using different <i>in vitro</i> methods. Drug Development and Industrial Pharmacy, 2017, 43, 1472-1479.	2.0	7
27	Gel-like TPGS-Based Microemulsions for Imiquimod Dermal Delivery: Role of Mesostructure on the Uptake and Distribution into the Skin. Molecular Pharmaceutics, 2017, 14, 3281-3289.	4.6	29
28	Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 116, 38-50.	4.3	53
29	In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery. International Journal of Molecular Sciences, 2017, 18, 32.	4.1	27
30	Effect of pH and penetration enhancers on cysteamine stability and trans-corneal transport. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 107, 171-179.	4.3	28
31	In-vitro characterization of buccal iontophoresis: the case of sumatriptan succinate. International Journal of Pharmaceutics, 2016, 506, 420-428.	5.2	15
32	Design and Synthesis of New Cell Penetrating Peptides: Diffusion and Distribution Inside the Cornea. Molecular Pharmaceutics, 2016, 13, 3876-3883.	4.6	24
33	Mechanisms of imiquimod skin penetration. International Journal of Pharmaceutics, 2016, 511, 516-523.	5.2	43
34	Permeation of Proteins, Oligonucleotide and Dextrans Across Ocular Tissues: Experimental Studies and a Literature Update. Journal of Pharmaceutical Sciences, 2015, 104, 2190-2202.	3.3	26
35	Development of a Convenient ex vivo Model for the Study of the Transcorneal Permeation of Drugs: Histological and Permeability Evaluation. Journal of Pharmaceutical Sciences, 2015, 104, 63-71.	3.3	52
36	Preparation and Evaluation of Chitosan Submicroparticles Containing Pilocarpine for Glaucoma Therapy. Current Drug Delivery, 2015, 12, 491-503.	1.6	9

#	Article	IF	CITATIONS
37	Therapeutics and Carriers: The Dual Role of Proteins in Nanoparticles for Ocular Delivery. Current Topics in Medicinal Chemistry, 2015, 15, 369-385.	2.1	17
38	In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 116-122.	4.3	19
39	Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides. European Journal of Pharmaceutical Sciences, 2013, 49, 142-147.	4.0	15
40	Amikacin reverse iontophoresis: Optimization of in vitro extraction. International Journal of Pharmaceutics, 2013, 440, 216-220.	5.2	9
41	In Vitro Evaluation of Mucoadhesive Films for Gingival Administration of Lidocaine. AAPS PharmSciTech, 2013, 14, 1279-1283.	3.3	21
42	In vitro trans-scleral iontophoresis of methylprednisolone hemisuccinate with short application time and high drug concentration. International Journal of Pharmaceutics, 2013, 451, 12-17.	5.2	12
43	Drug Adsorption on Bovine and Porcine Sclera Studied with Streaming Potential. Journal of Pharmaceutical Sciences, 2013, 102, 2264-2272.	3.3	10
44	Ex vivo models to evaluate the role of ocular melanin in trans-scleral drug delivery. European Journal of Pharmaceutical Sciences, 2012, 46, 475-483.	4.0	30
45	Interpretation of the human skin biotribological behaviour after tape stripping. Journal of the Royal Society Interface, 2011, 8, 934-941.	3.4	22
46	Effect of formulation factors on the trans-scleral iontophoretic and post-iontophoretic transports of a 40kDa dextran in vitro. European Journal of Pharmaceutical Sciences, 2011, 42, 503-508.	4.0	19
47	Trans-scleral delivery of macromolecules. Therapeutic Delivery, 2011, 2, 1331-1349.	2.2	19
48	Combined Patch Containing Salicylic Acid and Nicotinamide: Role of Drug Interaction. Current Drug Delivery, 2010, 7, 415-420.	1.6	3
49	Effect of lipopeptides and iontophoresis on aciclovir skin delivery. Journal of Pharmacy and Pharmacology, 2010, 62, 702-708.	2.4	22
50	Bioadhesive Films Containing Benzocaine: Correlation Between In Vitro Permeation and In Vivo Local Anesthetic Effect. Pharmaceutical Research, 2010, 27, 1677-1686.	3.5	45
51	In-vitro permeation of bevacizumab through human sclera: effect of iontophoresis application. Journal of Pharmacy and Pharmacology, 2010, 62, 1189-1194.	2.4	41
52	In vitro transscleral iontophoresis of high molecular weight neutral compounds. European Journal of Pharmaceutical Sciences, 2009, 36, 486-492.	4.0	38
53	Synthesis, hydrolysis, and skin retention of amino acid esters of α-tocopherol. Journal of Pharmaceutical Sciences, 2009, 98, 2364-2376.	3.3	8
54	Dermatopharmacokinetics: Factors Influencing Drug Clearance from the Stratum Corneum. Pharmaceutical Research, 2009, 26, 865-871.	3.5	29

#	Article	IF	CITATIONS
55	Innovative formulations for the delivery of levothyroxine to the skin. International Journal of Pharmaceutics, 2009, 372, 12-16.	5.2	24
56	A new approach to describe the skin surface physical properties in vivo. Colloids and Surfaces B: Biointerfaces, 2009, 68, 200-206.	5.0	55
57	Porcine sclera as a model of human sclera for in vitro transport experiments: histology, SEM, and comparative permeability. Molecular Vision, 2009, 15, 259-66.	1.1	69
58	Ethyl-paraben and nicotinamide mixtures: Apparent solubility, thermal behavior and X-ray structure of the 1:1 co-crystal. Journal of Pharmaceutical Sciences, 2008, 97, 4830-4839.	3.3	36
59	Characterization of Rabbit Ear Skin as a Skin Model for in vitro Transdermal Permeation Experiments: Histology, Lipid Composition and Permeability. Skin Pharmacology and Physiology, 2008, 21, 218-226.	2.5	48
60	Association of nicotinamide with parabens: Effect on solubility, partition and transdermal permeation. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 613-621.	4.3	33
61	Single-layer transdermal film containing lidocaine: Modulation of drug release. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 66, 422-428.	4.3	59
62	Suitability of Excised Rabbit Ear Skin—Fresh and Frozen—for Evaluating Transdermal Permeation of Estradiol. Drug Delivery, 2007, 14, 195-199.	5.7	11
63	<i>In vitro</i> skin permeation and retention of parabens from cosmetic formulations. International Journal of Cosmetic Science, 2007, 29, 361-367.	2.6	37
64	Bioadhesive film for dermal and transdermal drug delivery. European Journal of Dermatology, 2007, 17, 309-12.	0.6	27
65	New transdermal bioadhesive film containing oxybutynin: In vitro permeation across rabbit ear skin. International Journal of Pharmaceutics, 2006, 325, 2-7.	5.2	32
66	Assay of amikacin in the skin by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2006, 41, 994-997.	2.8	38
67	Transdermal delivery of aminoglycosides: Amikacin transport and iontophoretic non-invasive monitoring. Journal of Controlled Release, 2006, 111, 89-94.	9.9	14
68	Bioadhesive monolayer film for the in vitro transdermal delivery of sumatriptan. Journal of Pharmaceutical Sciences, 2006, 95, 1561-1569.	3.3	29
69	Effect of lactic acid and iontophoresis on drug permeation across rabbit ear skin. International Journal of Pharmaceutics, 2005, 292, 119-126.	5.2	30
70	Release and permeation kinetics of caffeine from bioadhesive transdermal films. AAPS Journal, 2005, 7, E218-E223.	4.4	28
71	Bioadhesive Transdermal Film Containing Caffeine. Skin Pharmacology and Physiology, 2004, 17, 119-123.	2.5	20
72	α-Tocopherol pro-vitamins: synthesis, hydrolysis and accumulation in rabbit ear skin. Journal of Controlled Release, 2004, 99, 403-413.	9.9	30

#	Article	IF	CITATIONS
73	Effect of chemical enhancers and iontophoresis on thiocolchicoside permeation across rabbit and human skin in vitro. Journal of Pharmaceutical Sciences, 2004, 93, 2431-2438.	3.3	42
74	Bioadhesive film for the transdermal delivery of lidocaine: in vitro and in vivo behavior. Journal of Controlled Release, 2003, 88, 277-285.	9.9	99
75	Characterization of the permselective properties of rabbit skin during transdermal iontophoresis. Journal of Pharmaceutical Sciences, 2003, 92, 1482-1488.	3.3	30
76	Post-iontophoresis transport of ibuprofen lysine across rabbit ear skin. International Journal of Pharmaceutics, 2003, 266, 69-75.	5.2	13
77	Skin Permeation of 5-Methoxypsoralen from Topical Dosage Forms. Drug Development and Industrial Pharmacy, 2003, 29, 247-251.	2.0	2
78	Design of triptorelin loaded nanospheres for transdermal iontophoretic administration. International Journal of Pharmaceutics, 2001, 214, 31-35.	5.2	56
79	Plasma and Skin Concentration of 5-Methoxypsoralen in Psoriatic Patients After Oral Administration. Journal of Investigative Dermatology, 2001, 117, 379-382.	0.7	14
80	Physical and chemical enhancement of transdermal delivery of triptorelin. Pharmaceutical Research, 2001, 18, 1634-1637.	3.5	22
81	In vitro acyclovir distribution in human skin layers after transdermal iontophoresis. Journal of Controlled Release, 1998, 50, 291-296.	9.9	54