Makoto Ouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transition Metal-Catalyzed Living Radical Polymerization: Toward Perfection in Catalysis and Precision Polymer Synthesis. Chemical Reviews, 2009, 109, 4963-5050.	23.0	1,208
2	Sequence-Controlled Polymers. Science, 2013, 341, 1238149.	6.0	1,097
3	Single-chain technology using discrete synthetic macromolecules. Nature Chemistry, 2011, 3, 917-924.	6.6	348
4	Sequenceâ€Regulated Radical Polymerization with a Metal―Templated Monomer: Repetitive ABA Sequence by Double Cyclopolymerization. Angewandte Chemie - International Edition, 2011, 50, 7434-7437.	7.2	195
5	Precision Control of Radical Polymerization via Transition Metal Catalysis: From Dormant Species to Designed Catalysts for Precision Functional Polymers. Accounts of Chemical Research, 2008, 41, 1120-1132.	7.6	192
6	Selective Radical Addition with a Designed Heterobifunctional Halide: A Primary Study toward Sequence-Controlled Polymerization upon Template Effect. Journal of the American Chemical Society, 2009, 131, 10808-10809.	6.6	171
7	Template-Assisted Selective Radical Addition toward Sequence-Regulated Polymerization: Lariat Capture of Target Monomer by Template Initiator. Journal of the American Chemical Society, 2010, 132, 14748-14750.	6.6	137
8	<i>50th Anniversary Perspective</i> : Metal-Catalyzed Living Radical Polymerization: Discovery and Perspective. Macromolecules, 2017, 50, 2603-2614.	2.2	136
9	Design of AB divinyl "template monomers―toward alternating sequence control in metal-catalyzed living radical polymerization. Polymer Chemistry, 2011, 2, 341-347.	1.9	118
10	Amphiphilic, Thermosensitive Ruthenium(II)-Bearing Star Polymer Catalysts:Â One-Pot Synthesis of PEG Armed Star Polymers with Ruthenium(II)-Enclosed Microgel Cores via Metal-Catalyzed Living Radical Polymerization. Macromolecules, 2007, 40, 3581-3588.	2.2	114
11	A strategy for sequence control in vinyl polymers via iterative controlled radical cyclization. Nature Communications, 2016, 7, 11064.	5.8	97
12	MALDIâ^'TOFâ^'MS Analysis of Ruthenium(II)-Mediated Living Radical Polymerizations of Methyl Methacrylate, Methyl Acrylate, and Styrene1. Macromolecules, 2001, 34, 2083-2088.	2.2	80
13	Stereoregulation in Cationic Polymerization by Designed Lewis Acids. 1. Highly Isotactic Poly(isobutyl) Tj ETQq1	1 0,78431 2.2	4 rgBT /Over
14	Active, Versatile, and Removable Iron Catalysts with Phosphazenium Salts for Living Radical Polymerization of Methacrylates. Macromolecules, 2009, 42, 188-193.	2.2	78
15	Thermoregulated phaseâ€transfer catalysis via PEGâ€armed Ru(II)â€bearing microgel core star polymers: Efficient and reusable Ru(II) catalysts for aqueous transfer hydrogenation of ketones. Journal of Polymer Science Part A, 2010, 48, 373-379.	2.5	74
16	Starâ€Polymerâ€Catalyzed Living Radical Polymerization: Microgelâ€Core Reaction Vessel by Tandem Catalyst Interchange. Angewandte Chemie - International Edition, 2011, 50, 7892-7895.	7.2	74
17	Sequence-controlled polymers via reversible-deactivation radical polymerization. Polymer Journal, 2018, 50, 83-94.	1.3	74
18	Evolution of Iron Catalysts for Effective Living Radical Polymerization:Â Design of Phosphine/Halogen Ligands in FeX2(PR3)21. Macromolecules. 2007. 40. 8658-8662.	2.2	65

#	Article	IF	CITATIONS
19	Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer. Angewandte Chemie - International Edition, 2016, 55, 14584-14589.	7.2	65
20	Designer Template Initiator for Sequence Regulated Polymerization: Systems Design for Substrateâ€Selective Metalâ€Catalyzed Radical Addition and Living Radical Polymerization. Macromolecular Rapid Communications, 2011, 32, 209-214.	2.0	62
21	Ring-Expansion Living Cationic Polymerization via Reversible Activation of a Hemiacetal Ester Bond. ACS Macro Letters, 2013, 2, 531-534.	2.3	62
22	Control of the Alternating Sequence for N â€Isopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angewandte Chemie - International Edition, 2018, 57, 10905-10909.	7.2	59
23	Metal-complex-bearing star polymers by metal-catalyzed living radical polymerization: Synthesis and characterization of poly(methyl methacrylate) star polymers with Ru(II)-embedded microgel cores. Journal of Polymer Science Part A, 2006, 44, 4966-4980.	2.5	55
24	Controlled radical depolymerization of chlorine-capped PMMA via reversible activation of the terminal group by ruthenium catalyst. European Polymer Journal, 2019, 120, 109181.	2.6	53
25	Fluorinated Microgel-Core Star Polymers as Fluorous Compartments for Molecular Recognition. Macromolecules, 2011, 44, 4574-4578.	2.2	49
26	AB-alternating copolymers <i>via</i> chain-growth polymerization: synthesis, characterization, self-assembly, and functions. Chemical Communications, 2020, 56, 3473-3483.	2.2	48
27	Iterative Radical Addition with a Special Monomer Carrying Bulky and Convertible Pendant: A New Concept toward Controlling the Sequence for Vinyl Polymers. ACS Macro Letters, 2016, 5, 745-749.	2.3	47
28	Phosphine–Ligand Decoration toward Active and Robust Iron Catalysts in LRP. Macromolecules, 2013, 46, 3342-3349.	2.2	46
29	Stereoregulation in cationic polymerization by designed Lewis acids. II. Effects of alkyl vinyl ether structure. Journal of Polymer Science Part A, 2001, 39, 1060-1066.	2.5	45
30	Ethanol-Mediated Living Radical Homo- and Copolymerizations with Cp*-Ruthenium Catalysts: Active, Robust, and Universal for Functionalized Methacrylates. Macromolecules, 2010, 43, 5595-5601.	2.2	44
31	A Study on Physical Properties of Cyclic Poly(vinyl ether)s Synthesized via Ring-Expansion Cationic Polymerization. Macromolecules, 2017, 50, 841-848.	2.2	44
32	Carbonylâ^'Phosphine Heteroligation for Pentamethylcyclopentadienyl (Cp*)â^'Iron Complexes: Highly Active and Versatile Catalysts for Living Radical Polymerization. Macromolecules, 2010, 43, 920-926.	2.2	41
33	Evolution of iron catalysts for effective living radical polymerization: P–N chelate ligand for enhancement of catalytic performances. Journal of Polymer Science Part A, 2008, 46, 6819-6827.	2.5	39
34	An Alkenyl Boronate as a Monomer for Radical Polymerizations: Boron as a Guide for Chain Growth and as a Replaceable Side Chain for Postâ€Polymerization Transformation. Angewandte Chemie - International Edition, 2019, 58, 12435-12439.	7.2	37
35	Bisphosphine Monoxide-Ligated Ruthenium Catalysts: Active, Versatile, Removable, and Cocatalyst-Free in Living Radical Polymerization. Macromolecules, 2010, 43, 5989-5995.	2.2	36
36	Unprecedented Sequence Control and Sequenceâ€Driven Properties in a Series of ABâ€Alternating Copolymers Consisting Solely of Acrylamide Units. Angewandte Chemie - International Edition, 2020, 59, 5193-5201.	7.2	36

#	Article	lF	CITATIONS
37	Stereoregulation in cationic polymerization. III. High isospecificity with the bulky phosphoric acid [(RO)2PO2H]/SnCl4 initiating systems: Design of counteranions via initiators. Journal of Polymer Science Part A, 2001, 39, 1067-1074.	2.5	32
38	Highly Active and Removable Ruthenium Catalysts for Transitionâ€Metalâ€Catalyzed Living Radical Polymerization: Design of Ligands and Cocatalysts. Chemistry - an Asian Journal, 2008, 3, 1358-1364.	1.7	31
39	Metal-Catalyzed Switching Degradation of Vinyl Polymers via Introduction of an "In-Chain― Carbon–Halogen Bond as the Trigger. ACS Macro Letters, 2021, 10, 1535-1539.	2.3	31
40	In Situ Hydrogenation of Terminal Halogen in Poly(methyl methacrylate) by Ruthenium-Catalyzed Living Radical Polymerization: Direct Transformation of "Polymerization Catalyst―into "Hydrogenation Catalyst― Journal of the American Chemical Society, 2006, 128, 11014-11015.	6.6	30
41	Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers: microgel-core reaction space for active, versatile and recyclable catalysis. Polymer Journal, 2011, 43, 770-777.	1.3	30
42	Oxidation of secâ€alcohols with Ru(II)â€bearing microgel star polymer catalysts via hydrogen transfer reaction: Unique microgelâ€core catalysis. Journal of Polymer Science Part A, 2011, 49, 1061-1069.	2.5	30
43	Ferrocene Cocatalysis for Iron-Catalyzed Living Radical Polymerization: Active, Robust, and Sustainable System under Concerted Catalysis by Two Iron Complexes. Macromolecules, 2015, 48, 4294-4300.	2.2	29
44	Ring-expansion cationic polymerization of vinyl ethers. Polymer Chemistry, 2017, 8, 4970-4977.	1.9	29
45	Cationic Polymerization of Cyclopentadiene with SnCl4:  Control of Molecular Weight and Narrow Molecular Weight Distribution. Macromolecules, 2001, 34, 3176-3181.	2.2	28
46	Cyclopolymerization of Cleavable Acrylate-Vinyl Ether Divinyl Monomer via Nitroxide-Mediated Radical Polymerization: Copolymer beyond Reactivity Ratio. ACS Macro Letters, 2017, 6, 754-757.	2.3	28
47	Amino alcohol additives for the fast living radical polymerization of methyl methacrylate with RuCl2(PPh3)3. Journal of Polymer Science Part A, 2003, 41, 3597-3605.	2.5	26
48	Supramolecular X-Shaped Homopolymers and Block Polymers by Midsegment Complementary Hydrogen Bonds: Design of Bifunctional Initiators with Interactive Sites for Metal-Catalyzed Living Radical Polymerization. Macromolecules, 2012, 45, 3702-3710.	2.2	26
49	Living CO ₂ -Switchable Latexes Prepared via Emulsion ATRP and AGET Miniemulsion ATRP. Macromolecules, 2016, 49, 6251-6259.	2.2	25
50	Carbonyl-phosphine hetero-ligated half-metallocene iron(II) catalysts for living radical polymerization: concomitant activity and stability. Polymer Journal, 2010, 42, 17-24.	1.3	23
51	Aqueous metal-catalyzed living radical polymerization: highly active water-assisted catalysis. Polymer Journal, 2012, 44, 51-58.	1.3	23
52	Unusual Radical Copolymerization of Suprabulky Methacrylate with N-Hydroxysuccinmide Acrylate: Facile Syntheses of Alternating-Rich Copolymers of Methacrylic Acid and N-Alkyl Acrylamide. Macromolecules, 2019, 52, 8577-8586.	2.2	23
53	Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polymer Journal, 2021, 53, 239-248.	1.3	22
54	Discussion on "Aperiodic Copolymers― ACS Macro Letters, 2016, 5, 1-3.	2.3	21

#	Article	IF	CITATIONS
55	Polymethacrylic Acid Shows Thermoresponsivity in an Organic Solvent. Macromolecules, 2019, 52, 5995-6004.	2.2	21
56	Alternating Sequence Control for Carboxylic Acid and Hydroxy Pendant Groups by Controlled Radical Cyclopolymerization of a Divinyl Monomer Carrying a Cleavable Spacer. Angewandte Chemie, 2016, 128, 14804-14809.	1.6	20
57	Self-Sorting of Amphiphilic Block-Pendant Homopolymers into Sphere or Rod Micelles in Water. Macromolecules, 2020, 53, 4942-4951.	2.2	20
58	Efficient and Robust Star Polymer Catalysts for Living Radical Polymerization: Cooperative Activation in Microgelâ€Core Reactors. Macromolecular Rapid Communications, 2012, 33, 833-841.	2.0	19
59	Design of maleimide monomer for higher level of alternating sequence in radical copolymerization with styrene. Journal of Polymer Science Part A, 2019, 57, 367-375.	2.5	19
60	Sequence Analysis for Alternating Copolymers by MALDIâ€TOFâ€MS: Importance of Initiator Selectivity for Comonomer Pair. Macromolecular Rapid Communications, 2016, 37, 1414-1420.	2.0	18
61	Precise control of single unit monomer radical addition with a bulky tertiary methacrylate monomer toward sequence-defined oligo- or poly(methacrylate)s <i>via</i> the iterative process. Polymer Chemistry, 2019, 10, 1998-2003.	1.9	18
62	Elucidating Monomer Character of an Alkenyl Boronate through Radical Copolymerization Leads to Copolymer Synthesis beyond the Limitation of Copolymerizability by Side-Chain Replacement. ACS Macro Letters, 2020, 9, 788-793.	2.3	18
63	Ringâ€Expansion Living Cationic Polymerization of Vinyl Ethers: Optimized Ring Propagation. Macromolecular Symposia, 2015, 350, 105-116.	0.4	17
64	A convergent approach to ring polymers with narrow molecular weight distributions through post dilution in ring expansion cationic polymerization. Polymer Chemistry, 2016, 7, 6911-6917.	1.9	17
65	Control of Regioselectivity and Main-Chain Microstructure in Cationic Polymerization of Cyclopentadiene1. Macromolecules, 2001, 34, 6586-6591.	2.2	16
66	Amphiphilic Random-Block Copolymer Micelles in Water: Precise and Dynamic Self-Assembly Controlled by Random Copolymer Association. Macromolecules, 2022, 55, 178-189.	2.2	16
67	Ferrocene Cocatalysis in Metal-Catalyzed Living Radical Polymerization: Concerted Redox for Highly Active Catalysis. ACS Macro Letters, 2012, 1, 321-323.	2.3	15
68	Physical gelation of AB-alternating copolymers made of vinyl phenol and maleimide units: cooperation between precisely incorporated phenol and long alkyl pendant groups. Polymer Chemistry, 2019, 10, 2327-2336.	1.9	15
69	One-Pot Preparation of Methacrylate/Styrene Alternating Copolymers via Radical Copolymerization and Alcoholysis Modification: Sequence Impacts on Glass Transition Temperature. ACS Polymers Au, 2021, 1, 10-15.	1.7	15
70	Terminal Umpolung in Metal-Catalyzed Living Radical Polymerization: Quantitative End-Capping of Carbonâ^'Halogen Bond via a Modifier Monomer. Macromolecules, 2008, 41, 4579-4581.	2.2	14
71	Folded amphiphilic homopolymer micelles in water: uniform self-assembly beyond amphiphilic random copolymers. Polymer Chemistry, 2020, 11, 5156-5162.	1.9	14
72	Backbone-Degradable Polymers via Radical Copolymerizations of Pentafluorophenyl Methacrylate with Cyclic Ketene Acetal: Pendant Modification and Efficient Degradation by Alternating-Rich Sequence. ACS Macro Letters, 2021, 10, 1223-1228.	2.3	14

#	Article	lF	CITATIONS
73	Vinylboronic acid pinacol ester as a vinyl alcohol-precursor monomer in radical copolymerization with styrene. Chemical Communications, 2021, 57, 7410-7413.	2.2	13
74	Living cationic polymerization of an azideâ€containing vinyl ether toward addressable functionalization of polymers. Journal of Polymer Science Part A, 2010, 48, 1449-1455.	2.5	12
75	Expanding vinyl ether monomer repertoire for ringâ€expansion cationic polymerization: Various cyclic polymers with tailored pendant groups. Journal of Polymer Science Part A, 2017, 55, 3082-3089.	2.5	12
76	Control of the Alternating Sequence for N â€Isopropylacrylamide (NIPAM) and Methacrylic Acid Units in a Copolymer by Cyclopolymerization and Transformation of the Cyclopendant Group. Angewandte Chemie, 2018, 130, 11071-11075.	1.6	12
77	Saccharin-pendant methacrylamide as a unique monomer in radical copolymerization: peculiar alternating copolymerization with styrene. Polymer Chemistry, 2020, 11, 6505-6511.	1.9	12
78	Design guide of amphiphilic crystalline random copolymers for sub-10 nm microphase separation. Polymer Chemistry, 2021, 12, 501-510.	1.9	12
79	Homopolymer- <i>block</i> -Alternating Copolymers Composed of Acrylamide Units: Design of Transformable Divinyl Monomers and Sequence-Specific Thermoresponsive Properties. Journal of the American Chemical Society, 2022, 144, 9959-9970.	6.6	12
80	Shuttling Catalyst for Living Radical Miniemulsion Polymerization: Thermoresponsive Ligand for Efficient Catalysis and Removal. ACS Macro Letters, 2015, 4, 628-631.	2.3	11
81	Design of a hydrophilic ruthenium catalyst for metal-catalyzed living radical polymerization: highly active catalysis in water. RSC Advances, 2016, 6, 6577-6582.	1.7	11
82	Alternating Copolymers of Vinyl Catechol or Vinyl Phenol with Alkyl Maleimide for Adhesive and Water-Repellent Coating Materials. ACS Applied Polymer Materials, 2020, 2, 4604-4612.	2.0	11
83	End-Functionalization with Alcohols in Metal-Catalyzed Living Radical Polymerization through Umpolung of Growing Carbonâ^ Halogen Bond. Macromolecules, 2010, 43, 8910-8916.	2.2	10
84	A thermoresponsive polymer supporter for concerted catalysis of ferrocene with a ruthenium catalyst in living radical polymerization: high activity and efficient removal of metal residues. Polymer Chemistry, 2015, 6, 7821-7826.	1.9	10
85	Single-chain crosslinked polymers <i>via</i> the transesterification of folded polymers: from efficient synthesis to crystallinity control. Polymer Chemistry, 2020, 11, 5181-5190.	1.9	10
86	Ring-expansion cationic cyclopolymerization for the construction of cyclic cyclopolymers. Polymer Chemistry, 2020, 11, 3964-3971.	1.9	10
87	Amphiphilic random and random block terpolymers with PEG, octadecyl, and oleyl pendants for controlled crystallization and microphase separation. Polymer Chemistry, 2021, 12, 1439-1447.	1.9	10
88	Antithetic function of alcohol in living cationic polymerization: From terminator/inhibitor to useful initiator. Journal of Polymer Science Part A, 2009, 47, 4194-4201.	2.5	9
89	Selective single monomer addition in living cationic polymerization: Sequential double end-functionalization in combination with capping agent. Journal of Polymer Science Part A, 2010, 48, 3375-3381.	2.5	9
90	Selective Coupling and Polymerization of Folded Polymer Micelles to Nanodomain Self-Assemblies. ACS Macro Letters, 2020, 9, 426-430.	2.3	9

#	Article	IF	CITATIONS
91	Construction of ring-based architectures <i>via</i> ring-expansion cationic polymerization and post-polymerization modification: design of cyclic initiators from divinyl ether and dicarboxylic acid. Polymer Chemistry, 2021, 12, 2532-2541.	1.9	9
92	Synthesis of end-functionalized polymers and copolymers of cyclopentadiene with vinyl ethers by cationic polymerization. Journal of Polymer Science Part A, 2001, 39, 398-407.	2.5	8
93	Dicarbonyl pentaphenylcyclopentadienyl iron complex for living radical polymerization: Smooth generation of real active catalysts collaborating with phosphine ligand. Journal of Polymer Science Part A, 2011, 49, 537-544.	2.5	8
94	Consecutive living polymerization from cationic to radical: a straightforward yet versatile methodology for the precision synthesis of "cleavable―block copolymers with a hemiacetal ester junction. Polymer Chemistry, 2012, 3, 2193.	1.9	8
95	Functionalization at the Central Position of Vinyl Polymer Chains: Highly Associable Multipoint Hydrogen Bonds for Complementary Selfâ€Assemblies. Macromolecular Rapid Communications, 2014, 35, 431-436.	2.0	8
96	RAFT polymerization of isopropenyl boronate pinacol ester and subsequent terminal olefination: precise synthesis of poly(alkenyl boronate)s and evaluation of their thermal properties. Polymer Journal, 2021, 53, 1167-1174.	1.3	8
97	Halogen Donors in Metal-Catalyzed Living Radical Polymerization:  Control of the Equilibrium between Dormant and Active Species. Macromolecules, 2008, 41, 518-520.	2.2	7
98	Chain center-functionalized amphiphilic block polymers: Complementary hydrogen bond self-assembly in aqueous solution. Journal of Polymer Science Part A, 2013, 51, 4498-4504.	2.5	7
99	Cationic Cp*–Ruthenium Catalysts for Metal-Catalyzed Living Radical Polymerization: Cocatalyst-Independent Catalysis Tuned by Counteranion. Macromolecules, 2016, 49, 2962-2970.	2.2	7
100	Unnatural Oligoaminosaccharides with <i>N</i> -1,2-Glycosidic Bonds Prepared by Cationic Ring-Opening Polymerization of 2-Oxazoline-Based Heterobicyclic Sugar Monomers. ACS Macro Letters, 2019, 8, 1456-1460.	2.3	7
101	Multilayered Lamellar Materials and Thin Films by Instant Self-Assembly of Amphiphilic Random Copolymers. ACS Macro Letters, 2021, 10, 1524-1528.	2.3	7
102	Amphiphilic 3-Arm Star Block Polymers by Living Cationic Polymerization. Polymer Journal, 1999, 31, 995-1000.	1.3	6
103	Design of Thermoresponsive Polymers Toward Antibody Purification. ACS Applied Polymer Materials, 2019, 1, 1925-1929.	2.0	6
104	Magnesium bromide (MgBr ₂) as a catalyst for living cationic polymerization and ring-expansion cationic polymerization. Polymer Chemistry, 2021, 12, 702-710.	1.9	6
105	Recent Development in Polymer Reactions for Overcoming Synthetic Limitations in Chain-growth Polymerization. Chemistry Letters, 2021, 50, 411-417.	0.7	6
106	Long-Range Ordered Lamellar Formation with Lower Molecular Weight PS-PMMA Block Copolymers: Significant Effects of Discrete Oligopeptides at the Junction. Macromolecules, 2022, 55, 2148-2159.	2.2	6
107	Reversible Co-Self-Assembly and Self-Sorting Systems of Polymer Micelles in Water: Polymers Switch Association Partners in Response to Salts. Macromolecules, 2022, 55, 5213-5221.	2.2	6
108	Design of a maleimide monomer to achieve precise sequence control and functionalization for an alternating copolymer with vinylphenol. Polymer Journal, 2020, 52, 717-729.	1.3	5

#	Article	IF	CITATIONS
109	Orthogonal C–B Bond Transformation as an Approach for Versatile Synthesis of End-Functionalized Polymers. ACS Macro Letters, 2022, 11, 706-710.	2.3	5
110	Selective Single Monomer Radical Addition via Template-Assisted Ring Closure: A Feasibility Study toward Sequence Control in Vinyl Polymers with Peptide Templates. ACS Symposium Series, 2014, , 149-160.	0.5	4
111	An Alkenyl Boronate as a Monomer for Radical Polymerizations: Boron as a Guide for Chain Growth and as a Replaceable Side Chain for Postâ€Polymerization Transformation. Angewandte Chemie, 2019, 131, 12565-12569.	1.6	4
112	"Smart―Catalysis with thermoresponsive ruthenium catalysts for miniemulsion ruâ€mediated reversible deactivation radical polymerization cocatalyzed by smart iron cocatalysts. Journal of Polymer Science Part A, 2019, 57, 305-312.	2.5	4
113	Unprecedented Sequence Control and Sequenceâ€Driven Properties in a Series of ABâ€Alternating Copolymers Consisting Solely of Acrylamide Units. Angewandte Chemie, 2020, 132, 5231-5239.	1.6	4
114	Copolymerizations of Saccharin Methacrylamide with Dienes toward Softer Alternating Copolymers and Advanced Sequence Control. Macromolecular Chemistry and Physics, 0, , 2100249.	1.1	4
115	Precise Syntheses of Alternating Cyclocopolymers via Radical Copolymerizations of Divinyl Ether with <i>N</i> -Substituted Maleimides. Macromolecules, 2022, 55, 4025-4033.	2.2	4
116	Living Radical Polymerization with Active Catalysts—Promotion of Catalytic Cycle via Dynamic Transformation of the Metal Complex. Kobunshi Ronbunshu, 2011, 68, 289-306.	0.2	3
117	Ferrocene cocatalysis for ruthenium-catalyzed radical miniemulsion polymerization. Polymer, 2016, 106, 313-319.	1.8	3
118	Chain extension of center-functionalized polystyrene via radical–radical coupling: Periodic introduction of complementary hydrogen bonding interaction site on polymer chain. European Polymer Journal, 2015, 62, 400-408.	2.6	2
119	Periodic introduction of a Hamilton receptor into a polystyrene backbone for a supramolecular graft copolymer with regular intervals. Polymer Chemistry, 2016, 7, 7152-7160.	1.9	2
120	Ouzo phase occurrence with alternating lipo/hydrophilic copolymers in water. Soft Matter, 2021, 17, 7384-7395.	1.2	1
121	Architecture dependence of thermal fluctuation effects on the order–disorder transition of block copolymer melts. Polymer, 2008, 49, 2979-2984.	1.8	0
122	Ring-Expansion Living Cationic Polymerization of Vinyl Ethers. Kobunshi Ronbunshu, 2015, 72, 468-479.	0.2	0
123	Macromol. Rapid Commun. 17/2016. Macromolecular Rapid Communications, 2016, 37, 1476-1476.	2.0	0
124	Professor Mitsuo Sawamotoâ€ <i>sensei</i> and innovator in polymer synthesis. Journal of Polymer Science Part A, 2019, 57, 197-198.	2.5	0