
Mary Beth B Monroe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355302/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of Phenolic Acid Antimicrobial and Antioxidant Structure–Property Relationships. Pharmaceutics, 2020, 12, 419.	2.0	75
2	Hemostatic shape memory polymer foams with improved survival in a lethal traumatic hemorrhage model. Acta Biomaterialia, 2022, 137, 112-123.	4.1	41
3	Biodegradable shape memory polymer foams with appropriate thermal properties for hemostatic applications. Journal of Biomedical Materials Research - Part A, 2020, 108, 1281-1294.	2.1	32
4	Biostable Segmented Thermoplastic Polyurethane Shape Memory Polymers for Smart Biomedical Applications. ACS Applied Polymer Materials, 2022, 4, 1956-1965.	2.0	29
5	Multifunctional Shapeâ€Memory Polymer Foams with Bioâ€inspired Antimicrobials. ChemPhysChem, 2018, 19, 1999-2008.	1.0	28
6	Biostable Shape Memory Polymer Foams for Smart Biomaterial Applications. Polymers, 2021, 13, 4084.	2.0	14
7	Shape Memory Polymer Foams With Phenolic Acid-Based Antioxidant and Antimicrobial Properties for Traumatic Wound Healing. Frontiers in Bioengineering and Biotechnology, 2022, 10, 809361.	2.0	13
8	Cold Plasma Reticulation of Shape Memory Embolic Tissue Scaffolds. Macromolecular Rapid Communications, 2016, 37, 1945-1951.	2.0	11
9	Shape memory polyurethaneâ€urea foams with improved toughness. Journal of Applied Polymer Science, 2019, 136, 47268.	1.3	11
10	Shape Memory Polymer Foams with Tunable Degradation Profiles. ACS Applied Bio Materials, 2021, 4, 6769-6779.	2.3	11
11	Development of siloxane-based amphiphiles as cell stabilizers for porous shape memory polymer systems. Journal of Colloid and Interface Science, 2016, 478, 334-343.	5.0	10
12	Increased X-ray Visualization of Shape Memory Polymer Foams by Chemical Incorporation of Iodine Motifs. Polymers, 2017, 9, 381.	2.0	10
13	Shape Memory Polymer Foams Synthesized Using Glycerol and Hexanetriol for Enhanced Degradation Resistance. Polymers, 2020, 12, 2290.	2.0	10
14	Effects of Sterilization on Shape Memory Polyurethane Embolic Foam Devices. Journal of Medical Devices, Transactions of the ASME, 2017, 11, 0310111-310119.	0.4	8
15	Shape memory polymer hydrogels with cellâ€responsive degradation mechanisms for Crohn's fistula closure. Journal of Biomedical Materials Research - Part A, 2022, 110, 1329-1340.	2.1	7
16	Particulate Release From Nanoparticle-Loaded Shape Memory Polymer Foams. Journal of Medical Devices, Transactions of the ASME, 2017, 11, 0110091-110099.	0.4	5
17	Characterization of shape memory polymer foam hemostats in in vitro hemorrhagic wound models. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 681-692.	1.6	5
18	Shape Memory Polymer Foams with Phenolic Acid-Based Antioxidant Properties. Antioxidants, 2022, 11, 1105.	2.2	5

#	Article	IF	CITATIONS
19	Shape memory polymer foams with tunable interconnectivity using offâ€ŧheâ€shelf foaming components. Journal of Biomedical Materials Research - Part A, 2022, 110, 1422-1434.	2.1	4
20	Hemostatic Shape Memory Polymer Foams With Improved Survival in a Lethal Traumatic Hemorrhage Model. SSRN Electronic Journal, 0, , .	0.4	2