List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9355154/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental sympatry suggests geographic isolation as an essential reproductive barrier between two sister species of <i>Pedicularis</i> . Journal of Systematics and Evolution, 2023, 61, 428-439.	3.1	3
2	An examination of nectar production in 34 species of <i>Dendrobium</i> indicates that deceptive pollination in the orchids is not popular. Journal of Systematics and Evolution, 2022, 60, 1371-1377.	3.1	3
3	Altitudeâ€related shift of relative abundance from insect to sunbird pollination in <i>Elaeagnus umbellata</i> (Elaeagnaceae). Journal of Systematics and Evolution, 2021, 59, 1266-1275.	3.1	7
4	Effective pollinia transfer by settling moths' legs in an orchid <i>Habenaria aitchisonii</i> . Journal of Systematics and Evolution, 2020, 58, 174-181.	3.1	8
5	Airborne conifer pollen grains are rarely deposited on stigmas of coflowering insectâ€pollinated angiosperms. Journal of Systematics and Evolution, 2020, 58, 331-338.	3.1	1
6	Transient dehydration of pollen carried by hot bees impedes fertilization. Arthropod-Plant Interactions, 2020, 14, 207-214.	1.1	3
7	Reproductive strategies of animalâ€pollinated plants on high mountains: A review of studies from the "Third Pole― Journal of Systematics and Evolution, 2020, , .	3.1	7
8	Pollen grain size associated with pollinator feeding strategy. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201191.	2.6	20
9	Foraging behavior and pollination efficiency of generalist insects in an understory dioecious shrub Helwingia japonica. American Journal of Botany, 2020, 107, 1274-1282.	1.7	2
10	Temporal scaleâ€dependence of plant–pollinator networks. Oikos, 2020, 129, 1289-1302.	2.7	66
11	Both small and large plants are likely to produce staminate (male) flowers in a hermaphrodite lily. Plant Diversity, 2020, 42, 142-147.	3.7	5
12	Nectar supplementation changes pollinator behaviour and pollination mode in <i>Pedicularis dichotoma</i> : implications for evolutionary transitions. Annals of Botany, 2019, 123, 373-380.	2.9	15
13	Pollen aggregation by viscin threads in <i>Rhododendron</i> varies with pollinator. New Phytologist, 2019, 221, 1150-1159.	7.3	16
14	Multiâ€year stigmatic pollenâ€load sampling reveals temporal stability in interspecific pollination of flowers in a subalpine meadow. Oikos, 2019, 128, 1739-1747.	2.7	21
15	Pollinator effectiveness and importance between female and male mining bee (Andrena). Biology Letters, 2019, 15, 20190479.	2.3	11
16	Colorâ€matching between pollen and corolla: hiding pollen via visual crypsis?. New Phytologist, 2019, 224, 1142-1150.	7.3	18
17	Bumblebee Rejection of Toxic Pollen Facilitates Pollen Transfer. Current Biology, 2019, 29, 1401-1406.e4.	3.9	23
18	Nectar yeasts enhance the interaction between <i>Clematis akebioides</i> and its bumblebee pollinator. Plant Biology, 2019, 21, 732-737.	3.8	40

#	Article	IF	CITATIONS
19	Discovery of androecium color polymorphism in Epimedium pubescens with habitat preference of anther/pollen color in the genus. Journal of Plant Ecology, 2018, 11, 533-541.	2.3	4
20	Heterostyly promotes compatible pollination in buckwheats: Comparisons of intraflower, intraplant, and interplant pollen flow in distylous and homostylous <i>Fagopyrum</i> . American Journal of Botany, 2018, 105, 108-116.	1.7	11
21	Pollen competition between morphs in a pollen-color dimorphic herb and the loss of phenotypic polymorphism within populations. Evolution; International Journal of Organic Evolution, 2018, 72, 785-797.	2.3	12
22	Sunbirds serve as major pollinators for various populations of <i>Firmiana kwangsiensis</i> , a tree endemic to South China. Journal of Systematics and Evolution, 2018, 56, 243-249.	3.1	5
23	Safe sites of pollen placement: a conflict of interest between plants and bees?. Oecologia, 2018, 186, 163-171.	2.0	41
24	Interspecific and intraspecific variation in corolla tube length in <i>Pedicularis</i> species achieved by both cell anisotropy and division. Journal of Systematics and Evolution, 2017, 55, 208-214.	3.1	0
25	Flexibility of resource allocation in a hermaphroditic-gynomonoecious herb through deployment of female and male resources in perfect flowers. American Journal of Botany, 2017, 104, 461-467.	1.7	5
26	Nectar properties and the role of sunbirds as pollinators of the goldenâ€flowered tea (<i>Camellia) Tj ETQq0 0 0</i>	rgBT /Ove	rlock 10 Tf 5
27	Transitions from distyly to homostyly are associated with floral evolution in the buckwheat genus (<i>Fagopyrum</i>). American Journal of Botany, 2017, 104, 1232-1240.	1.7	17
28	Evidence for passerine bird pollination in Rhododendron species. AoB PLANTS, 2017, 9, plx062.	2.3	23
29	Influence of plant size on female-biased sex allocation in a single-flowered, nectarless herb. AoB PLANTS, 2016, 8, .	2.3	2
30	Pre―and postâ€pollination interaction between six coâ€flowering <i>Pedicularis</i> species via heterospecific pollen transfer. New Phytologist, 2016, 211, 1452-1461.	7.3	36
31	Small bees overheat in sunlit flowers: do they make cooling flights?. Ecological Entomology, 2016, 41, 344-350.	2.2	17
32	Pollen size strongly correlates with stigma depth among <i>Pedicularis</i> species. Journal of Integrative Plant Biology, 2016, 58, 818-821.	8.5	12
33	Evidence for asymmetrical hybridization despite pre- and post-pollination reproductive barriers between two <i>Silene</i> species. AoB PLANTS, 2016, 8,	2.3	12
34	A paradoxical mismatch between interspecific pollinator moves and heterospecific pollen receipt in a natural community. Ecology, 2016, 97, 1970-1978.	3.2	23

35	Geographic consistency and variation in conflicting selection generated by pollinators and seed predators. Annals of Botany, 2016, 118, 227-237.	2.9	16

³⁶Are long corolla tubes in Pedicularis driven by pollinator selection?. Journal of Integrative Plant8.510Biology, 2016, 58, 698-700.

#	Article	IF	CITATIONS
37	Plantâ€pollinator interactions in a biodiverse meadow are rather stable and tight for 3 consecutive years. Integrative Zoology, 2016, 11, 199-206.	2.6	15
38	Shortened anther–stigma distance reduces compatible pollination in two distylous <i>Primula</i> species. Journal of Plant Ecology, 2016, 9, 224-232.	2.3	18
39	Rainwater in cupulate bracts repels seed herbivores in a bumblebee-pollinated subalpine flower. AoB PLANTS, 2015, 7, .	2.3	6
40	Effects of floral sexual investment and dichogamy on floral longevity. Journal of Plant Ecology, 2015, 8, 116-121.	2.3	9
41	Mast fruiting in a hawkmoth-pollinated orchid Habenaria glaucifolia: an 8-year survey. Journal of Plant Ecology, 2015, 8, 136-141.	2.3	19
42	Interspecific pollen transfer between two coflowering species was minimized by bumblebee fidelity and differential pollen placement on the bumblebee body. Journal of Plant Ecology, 2015, 8, 109-115.	2.3	38
43	Buzz pollination in eight bumblebee-pollinated Pedicularis species: does it involve vibration-induced triboelectric charging of pollen grains?. Annals of Botany, 2014, 114, 1665-1674.	2.9	55
44	Maintenance of self-incompatibility in peripheral populations of a circumboreal woodland subshrub. AoB PLANTS, 2014, 6, .	2.3	3
45	Do specialized flowers promote reproductive isolation? Realized pollination accuracy of three sympatric Pedicularis species. Annals of Botany, 2014, 113, 331-340.	2.9	53
46	Pistillate flowers experience more pollen limitation and less geitonogamy than perfect flowers in a gynomonoecious herb. New Phytologist, 2014, 201, 670-677.	7.3	15
47	Interspecific variation in pollen–ovule ratio is negatively correlated with pollen transfer efficiency in a natural community. Plant Biology, 2014, 16, 843-847.	3.8	25
48	Floral isolation in <i><scp>P</scp>edicularis</i> : how do congeners with shared pollinators minimize reproductive interference?. New Phytologist, 2013, 199, 858-865.	7.3	80
49	Differentiation of Floral Traits Associated with Pollinator Preference in a Generalist-Pollinated Herb, <i>Trollius ranunculoides</i> (Ranunculaceae). International Journal of Plant Sciences, 2013, 174, 637-646.	1.3	15
50	Experimental Evidence of Insect Pollination in Juncaceae, a Primarily Wind-Pollinated Family. International Journal of Plant Sciences, 2013, 174, 1219-1228.	1.3	18
51	Floral divergence, pollinator partitioning and the spatiotemporal pattern of plant–pollinator interactions in three sympatric Adenophora species. Oecologia, 2013, 173, 1411-1423.	2.0	24
52	Pollinator shift to managed honeybees enhances reproductive output in a bumblebee-pollinated plant. Plant Systematics and Evolution, 2013, 299, 139-150.	0.9	19
53	A directed network analysis of heterospecific pollen transfer in a biodiverse community. Ecology, 2013, 94, 1176-1185.	3.2	114
54	Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB PLANTS, 2013, 5, .	2.3	12

#	Article	IF	CITATIONS
55	Red young leaves have less mechanical defence than green young leaves. Oikos, 2013, 122, 1035-1041.	2.7	27
56	Floral diversity and community structure in <i>Pedicularis</i> (Orobanchaceae). Ecology, 2012, 93, S182.	3.2	96
57	Generalist passerine pollination of a winter-flowering fruit tree in central China. Annals of Botany, 2012, 109, 379-384.	2.9	40
58	Relative Stability of Core Groups in Pollination Networks in a Biodiversity Hotspot over Four Years. PLoS ONE, 2012, 7, e32663.	2.5	46
59	Extraâ€gynoecial pollenâ€ŧube growth in apocarpous angiosperms is phylogenetically widespread and probably adaptive. New Phytologist, 2012, 193, 253-260.	7.3	24
60	Does the relative importance of resource competition and architectural effect in floral variation vary with stages of floral ontogeny?. Journal of Systematics and Evolution, 2012, 50, 119-124.	3.1	4
61	Effects of soil moisture and floral herbivory on sexual expression in a gynodioecious orchid. Journal of Systematics and Evolution, 2012, 50, 454-459.	3.1	5
62	Are Pollination "Syndromes―Predictive? Asian <i>Dalechampia</i> Fit Neotropical Models. American Naturalist, 2011, 178, 135-143.	2.1	37
63	Production of male flowers does not decrease with plant size in insectâ€pollinated <i>Sagittaria trifolia</i> , contrary to predictions of sizeâ€dependent sex allocation. Journal of Systematics and Evolution, 2011, 49, 379-385.	3.1	11
64	Temporal stability of pollinator preference in an alpine plant community and its implications for the evolution of floral traits. Oecologia, 2011, 166, 671-680.	2.0	28
65	The effect of flower position on variation and covariation in floral traits in a wild hermaphrodite plant. BMC Plant Biology, 2010, 10, 91.	3.6	12
66	Floral symmetry: pollinator-mediated stabilizing selection on flower size in bilateral species. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4013-4020.	2.6	61
67	Pollen resistance to water in 80 angiosperm species: flower structures protect rainâ€susceptible pollen. New Phytologist, 2009, 183, 892-899.	7.3	61
68	Parthenogenesis Maintains Male Sterility in a Gynodioecious Orchid. American Naturalist, 2009, 174, 578-584.	2.1	21
69	Discovery of Gynoecium Color Polymorphism in an Aquatic Plant. Journal of Integrative Plant Biology, 2008, 50, 1178-1182.	8.5	9
70	Multifunctional Bracts in the Dove Tree <i>Davidia involucrata</i> (Nyssaceae: Cornales): Rain Protection and Pollinator Attraction. American Naturalist, 2008, 171, 119-124.	2.1	95
71	Evidence for reductions in floral attractants with increased selfing rates in two heterandrous species. New Phytologist, 2007, 175, 588-595.	7.3	29
72	Floral traits and isolation of three sympatric Aquilegia species in the Qinling Mountains, China. Plant Systematics and Evolution, 2007, 267, 121-128.	0.9	17

#	Article	IF	CITATIONS
73	Pollinator response to female and male floral display in a monoecious species and its implications for the evolution of floral dimorphism. New Phytologist, 2006, 171, 417-424.	7.3	35
74	Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Systematics and Evolution, 2005, 251, 229-237.	0.9	41
75	TEMPORAL FLORAL SEX ALLOCATION IN PROTOGYNOUS AQUILEGIA YABEANA CONTRASTS WITH PROTANDROUS SPECIES: SUPPORT FOR THE MATING ENVIRONMENT HYPOTHESIS. Evolution; International Journal of Organic Evolution, 2004, 58, 1131-1134.	2.3	36
76	Flower dimorphism and the maintenance of andromonoecy in Sagittaria guyanensis ssp. lappula (Alismataceae). New Phytologist, 2003, 157, 357-364.	7.3	42
77	Reproductive success by unusual growth of pollen tubes to ovules. New Phytologist, 2003, 158, 232-234.	7.3	12
78	Why does the flower stalk of <i>Pulsatilla cernua</i> (Ranunculaceae) bend during anthesis?. American Journal of Botany, 2002, 89, 1599-1603.	1.7	80
79	Gender Variation of Sequential Inflorescences in a Monoecious Plant Sagittaria trifolia (Alismataceae). Annals of Botany, 2002, 90, 613-622.	2.9	37