
Giorgia Simonetti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/935497/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transcriptional Regulation of Germinal Center B and Plasma Cell Fates by Dynamical Control of IRF4. Immunity, 2013, 38, 918-929.	6.6	356
2	Germinal center B cell maintenance and differentiation are controlled by distinct NF-κB transcription factor subunits. Journal of Experimental Medicine, 2014, 211, 2103-2118.	4.2	177
3	A WEE1 family business: regulation of mitosis, cancer progression, and therapeutic target. Journal of Hematology and Oncology, 2020, 13, 126.	6.9	135
4	Chronic myeloid leukemia stem cells. Leukemia, 2019, 33, 1543-1556.	3.3	127
5	The diverse roles of IRF4 in late germinal center Bâ€cell differentiation. Immunological Reviews, 2012, 247, 73-92.	2.8	113
6	Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data. BMC Bioinformatics, 2016, 17, 341.	1.2	103
7	Targeting Macrophages Sensitizes Chronic Lymphocytic Leukemia to Apoptosis and Inhibits Disease Progression. Cell Reports, 2016, 14, 1748-1760.	2.9	90
8	HS1 has a central role in the trafficking and homing of leukemic B cells. Blood, 2010, 116, 3537-3546.	0.6	89
9	Chromothripsis in acute myeloid leukemia: biological features and impact on survival. Leukemia, 2018, 32, 1609-1620.	3.3	80
10	Mouse models in the study of chronic lymphocytic leukemia pathogenesis and therapy. Blood, 2014, 124, 1010-1019.	0.6	78
11	Aneuploidy: Cancer strength or vulnerability?. International Journal of Cancer, 2019, 144, 8-25.	2.3	66
12	IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. Journal of Experimental Medicine, 2013, 210, 2887-2902.	4.2	61
13	A novel Rag2â^'/â^'î³câ^'/â^'-xenograft model of human CLL. Blood, 2010, 115, 1605-1609.	0.6	58
14	Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Molecular Cancer, 2020, 19, 69.	7.9	53
15	Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer, 2019, 125, 712-725.	2.0	49
16	Lack of TIR8/SIGIRR triggers progression of chronic lymphocytic leukemia in mouse models. Blood, 2011, 118, 660-669.	0.6	43
17	Factors affecting successful mobilization with plerixafor: an <scp>I</scp> talian prospective survey in 215 patients with multiple myeloma and lymphoma. Transfusion, 2014, 54, 331-339.	0.8	39
18	Xenograft models of chronic lymphocytic leukemia: problems, pitfalls and future directions. Leukemia, 2013, 27, 534-540.	3.3	38

#	Article	IF	CITATIONS
19	The role of Toll-like receptors in chronic B cell malignancies. Leukemia and Lymphoma, 2009, 50, 1573-1580.	0.6	34
20	The E3 ubiquitin ligase WWP1 sustains the growth of acute myeloid leukaemia. Leukemia, 2018, 32, 911-919.	3.3	34
21	5'UTR point substitutions and N-terminal truncating mutations of ANKRD26 in acute myeloid leukemia. Journal of Hematology and Oncology, 2017, 10, 18.	6.9	33
22	Network integration of multi-tumour omics data suggests novel targeting strategies. Nature Communications, 2018, 9, 4514.	5.8	33
23	Targeting PARP proteins in acute leukemia: DNA damage response inhibition and therapeutic strategies. Journal of Hematology and Oncology, 2022, 15, 10.	6.9	33
24	Fanconi anemia gene variants in therapy-related myeloid neoplasms. Blood Cancer Journal, 2015, 5, e323-e323.	2.8	32
25	Targeting the p53-MDM2 interaction by the small-molecule MDM2 antagonist Nutlin-3a: a new challenged target therapy in adult Philadelphia positive acute lymphoblastic leukemia patients. Oncotarget, 2016, 7, 12951-12961.	0.8	28
26	Main changes in European Clinical Trials Regulation (No 536/2014). Contemporary Clinical Trials Communications, 2018, 11, 99-101.	0.5	27
27	The acetyltransferase GCN5 maintains ATRA-resistance in non-APL AML. Leukemia, 2019, 33, 2628-2639.	3.3	27
28	The balance between mitotic death and mitotic slippage in acute leukemia: a new therapeutic window?. Journal of Hematology and Oncology, 2019, 12, 123.	6.9	27
29	Biomarkers for Pancreatic Neuroendocrine Neoplasms (PanNENs) Management—An Updated Review. Frontiers in Oncology, 2020, 10, 831.	1.3	27
30	CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. Journal of Experimental and Clinical Cancer Research, 2022, 41, 159.	3.5	25
31	Unravelling similarities and differences in the role of circular and linear PVT1 in cancer and human disease. British Journal of Cancer, 2022, 126, 835-850.	2.9	24
32	Release of IFNÎ ³ by Acute Myeloid Leukemia Cells Remodels Bone Marrow Immune Microenvironment by Inducing Regulatory T Cells. Clinical Cancer Research, 2022, 28, 3141-3155.	3.2	20
33	Synergism Through WEE1 and CHK1 Inhibition in Acute Lymphoblastic Leukemia. Cancers, 2019, 11, 1654.	1.7	18
34	Revealing very small FLT3 ITD mutated clones by ultra-deep sequencing analysis has important clinical implications in AML patients. Oncotarget, 2015, 6, 31284-31294.	0.8	18
35	Novel and Rare Fusion Transcripts Involving Transcription Factors and Tumor Suppressor Genes in Acute Myeloid Leukemia. Cancers, 2019, 11, 1951.	1.7	17
36	CART-Cell Therapy: Recent Advances and New Evidence in Multiple Myeloma. Cancers, 2021, 13, 2639.	1.7	17

#	Article	IF	CITATIONS
37	Integrated genomic-metabolic classification of acute myeloid leukemia defines a subgroup with NPM1 and cohesin/DNA damage mutations. Leukemia, 2021, 35, 2813-2826.	3.3	15
38	The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent <i>Drosophila</i> hematopoietic progenitor cells. Oncotarget, 2016, 7, 55313-55327.	0.8	15
39	Denatonium as a Bitter Taste Receptor Agonist Modifies Transcriptomic Profile and Functions of Acute Myeloid Leukemia Cells. Frontiers in Oncology, 2020, 10, 1225.	1.3	14
40	SIGLEC-G deficiency increases susceptibility to develop B-cell lymphoproliferative disorders. Haematologica, 2014, 99, 1356-1364.	1.7	12
41	IL1R8 Deficiency Drives Autoimmunity-Associated Lymphoma Development. Cancer Immunology Research, 2019, 7, 874-885.	1.6	10
42	Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers, 2021, 13, 4566.	1.7	10
43	CPX-351 daunorubicin-cytarabine liposome: a novel formulation to treat patients with newly diagnosed secondary acute myeloid leukemia. Minerva Medica, 2020, 111, 455-466.	0.3	10
44	Gemtuzumab ozogamicin in acute myeloid leukemia: past, present and future. Minerva Medica, 2020, 111, 395-410.	0.3	10
45	Epigenetically induced ectopic expression of UNCX impairs the proliferation and differentiation of myeloid cells. Haematologica, 2017, 102, 1204-1214.	1.7	8
46	Alternative Overexpression of NRF2 or MYC Defines a Subgroup of Poor Prognosis Acute Myeloid Leukemia and Suggests a Novel Therapeutic Strategy By Combined Bromodomain Inhibition and Forced NRF2 Pathway Activation. Blood, 2018, 132, 2639-2639.	0.6	8
47	Tagraxofusp and anti-CD123 in blastic plasmacytoid dendritic cell neoplasm: a new hope. Minerva Medica, 2020, 111, 467-477.	0.3	8
48	Pharmacological Inhibition of WIP1 Sensitizes Acute Myeloid Leukemia Cells to the MDM2 Inhibitor Nutlin-3a. Biomedicines, 2021, 9, 388.	1.4	6
49	Adrenomedullin Expression Characterizes Leukemia Stem Cells and Associates With an Inflammatory Signature in Acute Myeloid Leukemia. Frontiers in Oncology, 2021, 11, 684396.	1.3	6
50	Exploring the ATR-CHK1 pathway in the response of doxorubicin-induced DNA damages in acute lymphoblastic leukemia cells. Cell Biology and Toxicology, 2023, 39, 795-811.	2.4	6
51	Higher Expression of PALB2 Predict Poor Prognosis in AML Patients and Identifies Potential Targets of Synthetic Lethal Therapies. Blood, 2018, 132, 1507-1507.	0.6	6
52	Axitinib in Ponatinib-Resistant B-Cell Acute Lymphoblastic Leukemia Harboring a T315L Mutation. International Journal of Molecular Sciences, 2020, 21, 9724.	1.8	4
53	Combined Oral Fentanyl Citrate and Midazolam as Premedication for Bone Marrow Aspiration and Biopsy in Patients with Hematological Malignancies: A Randomized, Controlled and Patient-Blinded Clinical Trial. Journal of Clinical Medicine, 2020, 9, 395.	1.0	4
54	Kevetrin induces apoptosis in TP53 wild‑type and mutant acute myeloid leukemia cells. Oncology Reports, 2020, 44, 1561-1573.	1.2	4

#	Article	IF	CITATIONS
55	Efficacy of Azacitidine in the treatment of adult patients aged 65 years or older with AML. Expert Opinion on Pharmacotherapy, 2016, 17, 2479-2486.	0.9	3
56	Chromothripsis in acute myeloid leukemia: Biological features and impact on survival. Leukemia, 2017, ,	3.3	3
57	Identification of Two <i>DNMT3A</i> Mutations Compromising Protein Stability and Methylation Capacity in Acute Myeloid Leukemia. Journal of Oncology, 2019, 2019, 1-8.	0.6	3
58	Rearrangements of ATP5Lâ€KMT2A in acute lymphoblastic leukaemia. British Journal of Haematology, 2021, 192, e139-e144.	1.2	3
59	Synthesis of Novel Tryptamine Derivatives and Their Biological Activity as Antitumor Agents. Molecules, 2021, 26, 683.	1.7	3
60	Loss of PALB2 predicts poor prognosis in acute myeloid leukemia and suggests novel therapeutic strategies targeting the DNA repair pathway. Blood Cancer Journal, 2021, 11, 7.	2.8	3
61	Very Poor Outcome and Chemoresistance of Acute Myeloid Leukemia Patients with TP53 Mutations: Correlation with Complex Karyotype and Clinical Outcome. Blood, 2014, 124, 484-484.	0.6	3
62	Ex-Vivo Drug Response Profiling for Precision Medicine Approaches in Acute Myeloid Leukemia with the Open Microwell Microfluidic Platform. Blood, 2016, 128, 1675-1675.	0.6	3
63	Ultra-Deep Sequencing Strategy Is a Precious Tool to Find Small Clones Harbouring FLT3 Mutations in AML Patients. Blood, 2014, 124, 1040-1040.	0.6	2
64	RNA Sequencing Reveals Novel and Rare Fusion Transcripts in Acute Myeloid Leukemia. Blood, 2015, 126, 3627-3627.	0.6	2
65	Prognostic significance of alterations of pathways regulating autophagy in acute myeloid leukemia Journal of Clinical Oncology, 2017, 35, 7038-7038.	0.8	2
66	Interferon-Î ³ -Dependent Inflammatory Signature in Acute Myeloid Leukemia Cells Is Able to Shape Stromal and Immune Bone Marrow Microenvironment. Blood, 2019, 134, 1212-1212.	0.6	2
67	Bertilaccio MT, Simonetti G, Dagklis A, et al. Lack of TIR8/SIGIRR triggers progression of chronic lymphocytic leukemia in mouse models. Blood. 2011;118(3):660–669 Blood, 2012, 120, 2773-2773.	0.6	1
68	An 1H NMR study of the cytarabine degradation in clinical conditions to avoid drug waste, decrease therapy costs and improve patient compliance in acute leukemia. Anti-Cancer Drugs, 2020, 31, 67-72.	0.7	1
69	Abstract 2651: Deep hypoxia and the genomic background cooperate to shape the metabolic profile of acute myeloid leukemia cells. , 2019, , .		1
70	Abstract 5279: Metabolic profiling defines a new characterization of acute myeloid leukemia and identifiesNPM1-mutated cases as a distinct subgroup. , 2019, , .		1
71	Aggressive Aneuploid Acute Myeloid Leukemia Is Dependent on Alterations of P53, Gain of APC and PLK1 and Loss of RAD50. Blood, 2016, 128, 1702-1702.	0.6	1
72	Dissecting the Molecular Mechanisms of Aneuploidy in Acute Myeloid Leukemia By Next Generation Sequencing. Blood, 2014, 124, 1028-1028.	0.6	1

#	Article	IF	CITATIONS
73	FOXM1 Transcription Factor Is a Component of Beta Catenin Signaling in Hematopoietic Progenitors of Chronic Myeloid Leukemia. Blood, 2014, 124, 3125-3125.	0.6	1
74	Abstract 90: A cell cycle-related genomic and transcriptomic signature distinguish aneuploid and euploid acute myeloid leukemia. Cancer Research, 2016, 76, 90-90.	0.4	1
75	Alterations in Pathways Regulating Phosphatidil Inositol 3 Phosphate (PI3P) Produce Both Cell Proliferation and Therapy Resistance, and Define a Group of Patients with Poor Prognosis in Acute Myeloid Leukemia (AML). Blood, 2016, 128, 1679-1679.	0.6	1
76	The Irf4 Gene, a Susceptibility Locus for Chronic Lymphocytic Leukemia (CLL), Controls Establishment of Follicular and Marginal Zone B Cell Compartments in Mice. Blood, 2011, 118, 285-285.	0.6	0
77	Abstract 570:Tp53mutation screening in adult acute myeloid leukemia (AML) patients shows a strong association with complex karyotype and poor outcome. , 2014, , .		0
78	Abstract 3886: Clec12a: A new AML stem cell-associated antigen. , 2014, , .		0
79	Abstract 2243: Gene expression signature of aneuploidy in acute myeloid leukemia. , 2014, , .		Ο
80	SIRPB1 Is a Strong Predictor Biomarker of Response to 5-Azacitidine Therapy in MDS and AML Patients. Blood, 2014, 124, 1030-1030.	0.6	0
81	Next-Generation Sequencing Analysis Revealed That BCL11B Chromosomal Translocation Cooperates with Point Mutations in the Pathogenesis of Acute Myeloid Leukemia. Blood, 2014, 124, 2352-2352.	0.6	Ο
82	Abstract 4848: SNP array reveals a new deletion of JAK2 in AML patients. , 2015, , .		0
83	Abstract B03: Very poor outcome and chemoresistance of acute myeloid leukemia patients with TP53 mutations: Correlation with complex karyotype and clinical outcome , 2015, , .		Ο
84	Abstract 4835: A new biomarker of response to 5-azacitidine therapy in MDS and AML patients: SIRPB1. , 2015, , .		0
85	Abstract 4906: TP53 mutations are mutually exclusive with FLT3 and NPM mutations in AML patients and are strongly associated with complex karyotype and poor outcome. , 2015, , .		0
86	Two or More Chemotherapy Consolidation Courses, Followed By Autologous Bone Marrow Transplantation, and MRD Negativity, Give Long Term Overall Survival in Acute Myeloid Leukemia Patients. Blood, 2015, 126, 3198-3198.	0.6	0
87	Genomic-Wide Analysis By High Resolution SNP Array Identifies Novel Genomic Alteration in Acute Myeloid Leukemia. Blood, 2015, 126, 2600-2600.	0.6	0
88	Novel Genomic Patterns of Metabolic Remodeling in Acute Myeloid Leukemia. Blood, 2015, 126, 3837-3837.	0.6	0
89	Gemtuzumab-Ozogamicin Containing Regimens As Induction Therapy Give the Highest Complete Remission Rate and the Longest Overall Survival Compared with Other Induction Regimens in Patients with Newly Diagnosed Acute Myeloid Leukemia. Blood, 2015, 126, 2513-2513.	0.6	0
90	Clustering Adult ACUTE Lymphoblastic Leukemia (ALL) Philadelphia Negative (Ph-) By Whole Exome Sequencing (WES) Analysis. Blood, 2015, 126, 2623-2623.	0.6	0

#	Article	IF	CITATIONS
91	A New Entity of Acute Myeloid Leukemia Driven By Epigenetic and Somatic Dis-Regulation of Uncx, a Novel Homeobox Transcription Factor Gene. Blood, 2015, 126, 1356-1356.	0.6	0
92	A Specific Pattern of Somatic Mutations Associates with Poor Prognosis Aneuploid Acute Myeloid Leukemia: Results from the European NGS-PTL Consortium. Blood, 2015, 126, 3840-3840.	0.6	0
93	Pharmacological interaction and side effects in oncohaematology: a retrospective observational study Journal of Clinical Oncology, 2016, 34, e18235-e18235.	0.8	0
94	Impact on survival of catastrophic karyotype events in 101 consecutive acute myeloid leukemia (AML) patients: High risk karyotype and chromothripsis Journal of Clinical Oncology, 2016, 34, 7044-7044.	0.8	0
95	Survival analysis of 409 consecutive patients with newly diagnosed acute myeloid leukemia treated with intensive induction therapy, with or without the addition of gemtuzomab-ozagomicin (GO) Journal of Clinical Oncology, 2016, 34, 7043-7043.	0.8	0
96	Survival and outcome data observed in 98 patients affected by acute myeloid leukemia undergoing chemotherapy consolidation courses treatment followed by autologous bone marrow transplantation (auto-BMT) Journal of Clinical Oncology, 2016, 34, e18520-e18520.	0.8	0
97	Survival analysis of patients carrying different FLT3 mutations (internal tandem duplication (ITD) and) Tj ETQq1 1 leukemia (AML) Journal of Clinical Oncology, 2016, 34, e18521-e18521.	0.784314 0.8	orgBT /Overl o
98	Abstract 368: Specific chromosomic alterations confer therapy resistance in a cohort of 49 patients with newly diagnosed acute myeloid leukemia treated with intensive chemotherapy. , 2016, , .		0
99	Abstract 3582: Chromothripsis in AML patients: A new mechanism of cancer initiation and progression. , 2016, , .		0
100	Abstract 113: Novel fusion transcripts identified by RNAseq cooperate with somatic mutations in the pathogenesis of acute myeloid leukemia. , 2016, , .		0
101	Abstract 4507: New JAK2 heterozygous loss: A role in overall survival in acute myeloid leukemia patients. , 2016, , .		0
102	Chromothripsis in Acute Myeloid Leukemia Is Strongly Associated with Poor Prognosis and TP53 Alterations. Blood, 2016, 128, 1678-1678.	0.6	0
103	Alterations of BRCA1 and PALB2 Define a Novel Class of Complex-Karyotype AML with a Very Bad Prognosis. Blood, 2016, 128, 1677-1677.	0.6	0
104	Copy number variants signature in two patients with relapsed acute promyelocytic leukemia Journal of Clinical Oncology, 2017, 35, e23207-e23207.	0.8	0
105	Microarray analysis to identifiy novel copy number alterations in acute myeloid leukemia Journal of Clinical Oncology, 2017, 35, 11622-11622.	0.8	0
106	Deficient necroptosis pathway as a negative prognostic factor in acute myeloid leukemia Journal of Clinical Oncology, 2017, 35, 11611-11611.	0.8	0
107	Abstract 4671: Co-occurrence of alterations in the DNA damage repair genes synergize with uncontrolled proliferation and associate with very-poor prognosis in acute myeloid leukemia patients. , 2017, , .		0
108	Abstract 2451: Genomic wide microarray analysis identifies novel copy number alterations in adult acute myeloid leukemia. , 2017, , .		0

#	Article	IF	CITATIONS
109	Abstract 515: Alterations in phosphatidylinositol 3-phosphate (PI3P) pathway and cAMP pathway confirm poor prognosis and reduced overall survival (OS) in a series of 209 acute myeloid leukemia patients. , 2017, , .		Ο
110	Abstract 3311: The alteration in key regulator genes of autophagy is mainstream mechanism of therapy resistance and impact prognosis of acute myelogenous leukemia (AML): results from diagnosis genomic analysis on 148 consecutive patients treated with intensive chemotherapy and long-term survival follow-up., 2017,,.		0
111	Abstract 1766: Distinct pattern of alterations in tp53 mutated and wild type acute myeloid leukemia (AML) patients. , 2017, , .		Ο
112	Abstract 3472: Separase overexpression defines a new subset of acute myeloma leukemia patients characterized by high CD34 and MYC levels. , 2017, , .		0
113	Abstract 2539: Antiapoptotic gene expression signature reveals a combined talk to prevent apoptosis: A model to choose the proper BH-3 mimetic drug. , 2018, , .		Ο
114	Abstract 1872: Pharmacological inhibition of WIP1 sensitizes AML cells to MDM2 inhibitors. , 2018, , .		0
115	Abstract 3613: Lab-on-a-chip-based in-vitro functional profiling proves to be effective in predicting therapy outcome in AML patients. , 2018, , .		Ο
116	Abstract 656: Distinct pattern of alterations in TP53 mutated/deleted and wild-type high risk acute myeloid leukemia (AML) patients: Identification of new "targetable" genes/pathways. , 2018, , .		0
117	Abstract 3788: Antigen presentation by MHC-I molecule and immune escape in acute myeloid leukemia with high burden of genomic aberrations. , 2018, , .		0
118	A New Gene Expression Profile Signature CRLF2 Overexpression Based Identifies Novel Adult "Triple Negative" Acute Lymphoblastic Leukemia Subgroups. Blood, 2018, 132, 5284-5284.	0.6	0
119	Biology of Acute Myeloid Leukemia (AML) with Monosomy of Chromosome 7 or Loss of 7q. a Study on 487 Patients Analyzed By Gene Expression Profile (GEP), Single Nucleotide Polymorphism (SNP) Arrays and Metabolomics. Blood, 2018, 132, 2748-2748.	0.6	0
120	Bitter Taste Receptors System Is Expressed and Functional in Both HSCs and Leukemic Cells. Blood, 2018, 132, 2560-2560.	0.6	0
121	The Malignant Hemopoietic Clone of Triple Negative Patients with Myelofibrosis Shows in Vitro Functional Defects but Is Highly Responsive to the Pro-Survival Signals of Circulating Autologous Microvesicles. Blood, 2018, 132, 4334-4334.	0.6	Ο
122	Up-Regulation of Immune Tolerance Genes in Leukemic Mesenchymal Stromal Cells Is Induced By Acute Myeloid Leukemia Cells through an IFN-Gamma-Dependent Inflammatory Signaling. Blood, 2018, 132, 2579-2579.	0.6	0
123	Blinatumomab is safe and effective in relapsed and MRD-positive B-ALL CD19+ patients: The Bologna Compassionate Program Experience Journal of Clinical Oncology, 2019, 37, e18522-e18522.	0.8	Ο
124	Abstract 2140: "3c-up―a new adult Philadelphia negative acute lymphoblastic leukemia subgroup: Novel molecular markers. , 2019, , .		0
125	Abstract 2964: Pharmacological inhibition of WIP1 by CSK2830371 sensitizes AML cells to MDM2 inhibitor Nutlin-3a. , 2019, , .		0
126	The Prolonged Inhibition of Chk1/Chk2 Kinases Enhances Genetic Instability and Compromises the Efficacy of Chemotherapy Against Acute Lymphoblastic Leukemia Cells. Blood, 2019, 134, 5047-5047.	0.6	0

#	Article	IF	CITATIONS
127	Abstract 3100: Blinatumomab is safe and effective in relapsed and MRD positive B-ALL CD19+ patients: The bologna compassionate program experience. , 2019, , .		0
128	Abstract 1914: Acute myeloid leukemia cell and stem-progenitor cell behavior studied in mimetic bone marrow microenvironment. , 2019, , .		0
129	Prevalence and Prognostic Role of IDH Mutations in Acute Myeloid Leukemia: Results of the GIMEMA AML1516 Protocol. Cancers, 2022, 14, 3012.	1.7	0