Robert M Grainger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9354834/publications.pdf

Version: 2024-02-01

687363 888059 19 916 13 17 citations h-index g-index papers 19 19 19 1027 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Modeling Human Genetic Disorders with CRISPR Technologies in <i>Xenopus</i> . Cold Spring Harbor Protocols, 2022, 2022, pdb.prot106997.	0.3	5
2	Elucidating the framework for specification and determination of the embryonic retina. Experimental Cell Research, 2020, 397, 112316.	2.6	1
3	Simple embryo injection of long singleâ€stranded donor templates with the <scp>CRISPR</scp> /Cas9 system leads to homologyâ€directed repair in <scp><i>Xenopus tropicalis</i></scp> and <scp><i>Xenopus laevis</i></scp> . Genesis, 2020, 58, e23366.	1.6	19
4	Special Considerations for Making Explants and Transplants with Xenopus tropicalis. Cold Spring Harbor Protocols, 2019, 2019, pdb.prot097428.	0.3	1
5	no privacy, a Xenopus tropicalis mutant, is a model of human Hermansky-Pudlak Syndrome and allows visualization of internal organogenesis during tadpole development. Developmental Biology, 2017, 426, 472-486.	2.0	28
6	Functional Cloning Using a Xenopus Oocyte Expression System. Journal of Visualized Experiments, 2016, , e53518.	0.3	1
7	Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Developmental Biology, 2015, 408, 328-344.	2.0	58
8	Cas9-Based Genome Editing in Xenopus tropicalis. Methods in Enzymology, 2014, 546, 355-375.	1.0	96
9	Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character. Developmental Biology, 2014, 395, 317-330.	2.0	28
10	Simple and efficient CRISPR/Cas9â€mediated targeted mutagenesis in <i>Xenopus tropicalis</i> . Genesis, 2013, 51, 835-843.	1.6	251
11	Xenopus tropicalis as a Model Organism for Genetics and Genomics: Past, Present, and Future. Methods in Molecular Biology, 2012, 917, 3-15.	0.9	38
12	Simple, fast, tissueâ€specific bacterial artificial chromosome transgenesis in <i>Xenopus</i> . Genesis, 2012, 50, 307-315.	1.6	19
13	Development of xenopus resource centers: The national xenopus resource and the european xenopus resource center. Genesis, 2012, 50, 155-163.	1.6	57
14	High-throughput transgenesis in Xenopus using I-Scel meganuclease. Nature Protocols, 2006, 1, 1703-1710.	12.0	124
15	Lens Induction and Determination. , 2004, , 27-47.		7
16	Inducible control of tissue-specific transgene expression in Xenopus tropicalis transgenic lines. Mechanisms of Development, 2002, 117, 235-241.	1.7	53
17	Defining intermediate stages in cell determination: Acquisition of a lens-forming bias in head ectoderm during lens determination. Genesis, 1997, 20, 246-257.	2.1	74
18	Differential expression of type II cytokeratin mRNA defines early developmental boundaries within the ectoderm, mesoderm and endoderm during chick development. Roux's Archives of Developmental Biology, 1993, 202, 355-363.	1.2	1

#	Article	IF	CITATIONS
19	Is hypomethylation linked to activation of $\hat{\Gamma}$ -crystallin genes during lens development?. Nature, 1983, 306, 88-91.	27.8	55