Jan Schmitt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9354005/publications.pdf

Version: 2024-02-01

1040056 1058476 28 344 9 14 citations h-index g-index papers 28 28 28 338 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Climate Adaptation as Organizational Learning: A Grounded Theory Study on Manufacturing Companies in a Bavarian Region. Education Sciences, 2022, 12, 22.	2.6	4
2	Ein integriertes Vorgehensmodell zur Implementierung eines nachhaltigen Wertstoffmanagements. Management-Reihe Corporate Social Responsibility, 2022, , 93-105.	0.1	O
3	A Brief Review of Our Agile Teaching Formats in Entrepreneurship Education. Sustainability, 2022, 14, 251.	3.2	15
4	Human acceptance evaluation of AR-assisted assembly scenarios. Journal of Manufacturing Systems, 2021, 61, 660-672.	13.9	28
5	Assisted Human-Robot-Interaction for Industrial Assembly. , 2021, , .		9
6	Assisted Human-Robot-Interaction for Industrial Assembly. , 2021, , .		3
7	Advances in the Development of Sol-Gel Materials Combining Small-Angle X-ray Scattering (SAXS) and Machine Learning (ML). Processes, 2021, 9, 672.	2.8	4
8	Enhanced Changeover Detection in Industry 4.0 Environments with Machine Learning. Sensors, 2021, 21, 5896.	3.8	6
9	Sustainable Aspects of a Metal Printing Process Chain with Laser Powder Bed Fusion (LPBF). Procedia CIRP, 2021, 98, 613-618.	1.9	7
10	Evaluation of Visual Requirements and Software-Design for Immersive Visibility in Industrial Applications. , $2021, , .$		3
11	Industry 4.0 and International Collaborative Online Learning in a Higher Education Course on Machine Learning. , 2021, , .		5
12	Advances in Machine Learning Detecting Changeover Processes in Cyber Physical Production Systems. Journal of Manufacturing and Materials Processing, 2020, 4, 108.	2.2	9
13	Design preferences on Industrial Augmented Reality: a survey with potential technical writers. , 2020, ,		18
14	Evaluation of proceedings for SMEs to conduct I4.0 projects. Procedia CIRP, 2019, 86, 257-263.	1.9	18
15	Toward Shifted Production Strategies Through Additive Manufacturing: A Technology and Market Review for Changing Value Chains. Procedia CIRP, 2019, 86, 228-233.	1.9	9
16	Disassembly Planning and Assessment of Automation Potentials for Lithium-Ion Batteries. Sustainable Production, Life Cycle Engineering and Management, 2018, , 83-97.	0.3	15
17	Analyzing Bending Stresses on Lithium″on Battery Cathodes induced by the Assembly Process. Energy Technology, 2016, 4, 1502-1508.	3.8	34
18	Technical Performance and Energy Intensity of the Electrode-Separator Composite Manufacturing Process. Procedia CIRP, 2015, 29, 269-274.	1.9	9

#	Article	IF	Citations
19	Failure Mode Based Design and Optimization of the Electrode Packaging Process for Large Scale Battery Cells. Advanced Materials Research, 2014, 907, 309-319.	0.3	2
20	A Novel Gripper for Battery Electrodes based on the Bernoulli-principle with Integrated Exhaust Air Compensation. Procedia CIRP, 2014, 23, 161-164.	1.9	24
21	Process and performance optimization by selective assembly of battery electrodes. CIRP Annals - Manufacturing Technology, 2014, 63, 9-12.	3.6	19
22	Assessment of Automation Potentials for the Disassembly of Automotive Lithium Ion Battery Systems. , $2012, 149-154$.		22
23	Comparative Analysis of Pneumatic Grippers for Handling Operations of Crystalline Solar Cells. , 2012,		1
24	Disassembly automation for lithium-ion battery systems using a flexible gripper. , 2011, , .		17
25	Tracking control with hysteresis compensation for manipulator segments driven by pneumatic artificial muscles., 2011,,.		16
26	Design of a hyper-flexible assembly robot using artificial muscles. , 2010, , .		5
27	TRoBS — a biological inspired robot. , 2009, , .		1
28	Scenario-Based Development of Disassembly Systems for Automotive Lithium Ion Battery Systems. Advanced Materials Research, 0, 907, 391-401.	0.3	41