Dimitris G Papazoglou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9353886/publications.pdf

Version: 2024-02-01

172457 144013 3,383 86 29 citations h-index papers

57 g-index 86 86 86 2383 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Terahertz emission from curved plasma filaments induced by two-color 2D-Airy wave packets. Optics Letters, 2022, 47, 1271-1274.	3.3	O
2	Spiraling light: Generating optical tornados. Physical Review A, 2022, 105, .	2.5	8
3	Generation of Tornado Waves. , 2021, , .		O
4	Terahertz Generation from Curved Two-Color Filaments Induced by 2D Airy Wave Packets. , 2021, , .		0
5	Emission of Terahertz Waves from Curved Two-Color Filaments Produced by 2D Airy Wave Packets. , 2021, , .		O
6	Experimental observation of Tornado Waves. , 2021, , .		0
7	High laser induced damage threshold photoresists for nano-imprint and 3D multi-photon lithography. Nanophotonics, 2021, 10, 3759-3768.	6.0	10
8	AEDGE: Atomic Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum Technology, 2020, 7, .	6.3	190
9	3D holographic light shaping for advanced multiphoton polymerization. Optics Letters, 2020, 45, 85.	3.3	27
10	Tornado waves. Optics Letters, 2020, 45, 280.	3.3	39
11	Precise and robust optical beam steering for space optical instrumentation. CEAS Space Journal, 2019, 11, 589-595.	2.3	5
12	Ultra-Broadband Partially Coherent Accelerating Beams. , 2019, , .		0
13	Shaped Accelerating Beams for Materials Processing. , 2019, , .		O
14	Radially and Angularly Accelerating Optical Wave-Packets. , 2019, , .		0
15	Transformation of ring-Airy beams during efficient harmonic generation. Optics Letters, 2019, 44, 2974.	3.3	7
16	Long-scale multiphoton polymerization voxel growth investigation using engineered Bessel beams. Optical Materials Express, 2019, 9, 2838.	3.0	11
17	Ring-Airy beams at the wavelength limit. Optics Letters, 2018, 43, 1063.	3.3	15
18	Simple precision measurements of optical beam sizes. Applied Optics, 2018, 57, 9863.	1.8	11

#	Article	IF	CITATIONS
19	Ultra-broadband tunable continuous phase masks using optical aberrations. Optics Letters, 2018, 43, 5480.	3.3	6
20	Tailoring the focal region of abruptly autofocusing and autodefocusing ring-Airy beams. OSA Continuum, 2018, 1, 104.	1.8	15
21	Ultra-broadband tunable continuous phase masks using optical aberrations: publisher's note. Optics Letters, 2018, 43, 5668.	3.3	0
22	Phase Memory Preserving Harmonics from Abruptly Autofocusing Beams. Physical Review Letters, 2017, 119, 223901.	7.8	26
23	Janus waves. Optics Letters, 2016, 41, 4656.	3.3	25
24	Abruptly autofocusing beams enable advanced multiscale photo-polymerization. Optica, 2016, 3, 525.	9.3	127
25	Nonlinear plasma-assisted collapse of ring-Airy wave packets. Physical Review A, 2016, 93, .	2.5	24
26	Enhanced terahertz wave emission from air-plasma tailored by abruptly autofocusing laser beams. Optica, 2016, 3, 605.	9.3	64
27	Ultrafast electron and material dynamics following femtosecond filamentation induced excitation of transparent solids. Applied Physics A: Materials Science and Processing, 2014, 114, 161-168.	2.3	22
28	Controlling high-power autofocusing waves with periodic lattices. Optics Letters, 2014, 39, 4958.	3.3	16
29	Sharply autofocused ring-Airy beams transforming into non-linear intense light bullets. Nature Communications, 2013, 4, 2622.	12.8	290
30	Application of inverse Abel techniques in in-line holographic microscopy. Optics Communications, 2013, 296, 25-34.	2.1	10
31	Tailoring femtosecond laser pulse filamentation using plasma photonic lattices. Applied Physics Letters, 2013, 103, .	3.3	14
32	Emergence of very broad infrared absorption band by hyperdoping of silicon with chalcogens. Journal of Applied Physics, 2013, 113, .	2.5	70
33	Linear and nonlinear waves in surface and wedge index potentials. Optics Letters, 2012, 37, 1874.	3.3	1
34	Nonlinear propagation dynamics of finite-energy Airy beams. Physical Review A, 2012, 86, .	2.5	83
35	Observation and Optical Tailoring of Photonic Lattice Filaments. Physical Review Letters, 2012, 109, 113905.	7.8	24
36	Cavitation dynamics and directional microbubble ejection induced by intense femtosecond laser pulses in liquids. Physical Review E, 2012, 86, 036304.	2.1	31

#	Article	IF	CITATIONS
37	Nonlinear light-matter interaction with femtosecond high-angle Bessel beams. Physical Review A, 2012, 85, .	2.5	46
38	Femtosecond laser pulse control of collapsing bubble jets and bubble ejection streams., 2012,,.		0
39	Nonlinear birefringence due to non-resonant, higher-order Kerr effect in isotropic media. Optics Express, 2011, 19, 6387.	3.4	11
40	Intense dynamic bullets in a periodic lattice. Optics Express, 2011, 19, 10057.	3.4	12
41	Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments. Optics Express, 2011, 19, 16866.	3.4	30
42	Off-resonance and non-resonant dispersion of Kerr nonlinearity for symmetric molecules [Invited]. Optics Express, 2011, 19, 22486.	3.4	24
43	Observation of abruptly autofocusing waves. Optics Letters, 2011, 36, 1842.	3.3	390
44	Physical mechanisms of fused silica restructuring and densification after femtosecond laser excitation [Invited]. Optical Materials Express, 2011, 1, 625.	3.0	35
45	Stationary nonlinear Airy beams. Physical Review A, 2011, 84, .	2.5	123
46	Four-dimensional visualization of single and multiple laser filaments using in-line holographic microscopy. Physical Review A, 2011, 84, .	2.5	20
47	Tunable intense Airy beams and tailored femtosecond laser filaments. Physical Review A, 2010, 81, .	2.5	70
48	Tailoring the filamentation of intense femtosecond laser pulses with periodic lattices. Physical Review A, 2010, 82, .	2.5	25
49	Filamentation-induced third-harmonic generation in air via plasma-enhanced third-order susceptibility. Physical Review A, 2010, 81, .	2.5	56
50	Spatiotemporal Airy Light Bullets in the Linear and Nonlinear Regimes. Physical Review Letters, 2010, 105, 253901.	7.8	383
51	ALD synthesis of SnSe layers and nanostructures. Journal Physics D: Applied Physics, 2009, 42, 125306.	2.8	45
52	Efficient third-harmonic generation through tailored IR femtosecond laser pulse filamentation in air. Optics Express, 2009, 17, 3190.	3.4	51
53	Long spatio-temporally stationary filaments in air using short pulse UV laser Bessel beams. Optics Express, 2009, 17, 5052.	3.4	31
54	Femtosecond laser induced plasma diffraction gratings in air as photonic devices for high intensity laser applications. Applied Physics Letters, 2009, 94, .	3.3	45

#	Article	IF	CITATIONS
55	Ultrashort laser pulse filamentation from spontaneous X Wave formation in air. Optics Express, 2008, 16, 1565.	3.4	70
56	Kerr-induced spontaneous Bessel beam formation in the regime of strong two-photon absorption. Optics Express, 2008, 16, 8213.	3.4	25
57	Longitudinal coherence of organic-based microcavity lasers. Optics Express, 2008, 16, 10384.	3.4	1
58	In-line holography for the characterization of ultrafast laser filamentation in transparent media. Applied Physics Letters, 2008, 93, .	3.3	60
59	Few-cycle laser-pulse collapse in Kerr media: The role of group-velocity dispersion and mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi mathvariant="sans-serif">X</mml:mi> -wave formation. Physical Review A, 2008, 78, .	2.5	16
60	Plasma strings from ultraviolet laser filaments drive permanent structural modifications in fused silica. Optics Letters, 2007, 32, 2055.	3.3	34
61	Single-shot temporal coherence measurements of random lasing media. Journal of the Optical Society of America B: Optical Physics, 2007, 24, 31.	2.1	29
62	Structural modifications in fused silica induced by ultraviolet fs laser filaments. Applied Surface Science, 2007, 253, 7865-7868.	6.1	11
63	Silicon electron emitters fabricated by ultraviolet laser pulses. Applied Physics Letters, 2006, 88, 081103.	3.3	67
64	Long-range filamentary propagation of subpicosecond ultraviolet laser pulses in fused silica. Optics Letters, 2006, 31, 796.	3.3	27
65	Embedded birefringent computer-generated holograms fabricated by femtosecond laser pulses. Optics Letters, 2006, 31, 1441.	3.3	13
66	Laser annealing of plasma implanted boron for ultra-shallow junctions in Silicon. Nuclear Instruments & Methods in Physics Research B, 2006, 253, 13-17.	1.4	5
67	Ultraviolet laser microstructuring of silicon and the effect of laser pulse duration on the surface morphology. Applied Surface Science, 2006, 252, 4462-4466.	6.1	29
68	Field-emission properties of arrays and extended areas of laser-fabricated silicon microstructures. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2006, 220, 143-150.	0.1	0
69	Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials. Applied Surface Science, 2005, 247, 584-589.	6.1	49
70	Sub-picosecond ultraviolet laser filamentation-induced bulk modifications in fused silica. Applied Physics A: Materials Science and Processing, 2005, 81, 241-244.	2.3	18
71	Femtosecond laser microprinting of biomaterials. Applied Physics Letters, 2005, 86, 163902.	3.3	101
72	In situ interferometric depth and topography monitoring in LIBS elemental profiling of multi-layer structures. Journal of Analytical Atomic Spectrometry, 2004, 19, 483.	3.0	58

#	Article	IF	Citations
73	Sub-ps laser microstructuring of soft X-ray Mo/Si multilayer gratings. Applied Physics A: Materials Science and Processing, 2003, 76, 763-766.	2.3	1
74	A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr. Applied Surface Science, 2003, 208-209, 177-180.	6.1	45
75	Diffractive properties of volume phase gratings in photorefractive sillenite crystals of arbitrary cut under the influence of an external electric field. Physical Review E, 2003, 68, 056602.	2.1	8
76	Holographic read - write projector of video images. Optics Express, 2002, 10, 280.	3.4	10
77	Shadowgraphic imaging of the sub-ps laser-induced forward transfer process. Applied Physics Letters, 2002, 81, 1594-1596.	3.3	39
78	Photorefractive properties of (1-10) and (111)-cut sillenite crystals when external electric field is applied along the direction of the optimum diffraction efficiency. Applied Physics B: Lasers and Optics, 2002, 75, 67-73.	2.2	7
79	Laser microprinting of InOx active optical structures and time resolved imaging of the transfer process. Applied Surface Science, 2002, 197-198, 868-872.	6.1	21
80	Laser printing of active optical microstructures. Applied Physics Letters, 2001, 78, 868-870.	3.3	27
81	Optical properties of Bi12SiO20 single crystals doped with 4d and 5d transition elements. Journal of Applied Physics, 2001, 89, 2686-2689.	2.5	16
82	Photorefractive optical properties of volume phase gratings induced in sillenite crystals, when the grating vector lies on the (111) plane. Applied Physics B: Lasers and Optics, 2000, 71, 841-848.	2.2	2
83	Diffraction efficiency as a function of the grating vector orientation in electro-optic and optically active photorefractive crystals. Ferroelectrics, 1998, 205, 87-106.	0.6	3
84	Index of refraction, optical activity and electro-optic coefficient of bismuth titanium oxide (Bi 12 TiO) Tj ETQq0	0 0 rgBT /(Overlock 10 Tf
85	Measurement of the electro-optic coefficient of Bi12GeO20 (BGO), Bi12TiO20 (BTO) crystals. Synthetic Metals, 1996, 83, 281-285.	3.9	4
86	Efficiency of photorefractive diffraction in electro-optic and optically active sillenite crystals. Synthetic Metals, 1996, 83, 287-291.	3.9	3