Patrick A Lewis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9353673/publications.pdf Version: 2024-02-01

DATRICK ALEWIS

#	Article	IF	CITATIONS
1	Prions. ACS in Focus, 2022, , .	0.6	0
2	Dissecting the Phenotype and Genotype of <scp><i>PLA2G6</i></scp> â€Related Parkinsonism. Movement Disorders, 2022, 37, 148-161.	3.9	32
3	The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Research, 2022, 1778, 147781.	2.2	7
4	Directing LRRK2 to membranes of the endolysosomal pathway triggers RAB phosphorylation and JIP4 recruitment. Neurobiology of Disease, 2022, 170, 105769.	4.4	18
5	Leucine-rich repeat kinase 2 (LRRK2): an update on the potential therapeutic target for Parkinson's disease. Expert Opinion on Therapeutic Targets, 2022, 26, 537-546.	3.4	5
6	Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line. International Journal of Molecular Sciences, 2022, 23, 6935.	4.1	1
7	A step forward for LRRK2 inhibitors in Parkinson's disease. Science Translational Medicine, 2022, 14, .	12.4	7
8	The emerging role of LRRK2 in tauopathies. Clinical Science, 2022, 136, 1071-1079.	4.3	12
9	Preclinical modeling of chronic inhibition of the Parkinson's disease associated kinase LRRK2 reveals altered function of the endolysosomal system in vivo. Molecular Neurodegeneration, 2021, 16, 17.	10.8	29
10	Identification of Candidate Parkinson Disease Genes by Integrating Genome-Wide Association Study, Expression, and Epigenetic Data Sets. JAMA Neurology, 2021, 78, 464.	9.0	95
11	Integrating protein networks and machine learning for disease stratification in the Hereditary Spastic Paraplegias. IScience, 2021, 24, 102484.	4.1	8
12	An integrated genomic approach to dissect the genetic landscape regulating the cell-to-cell transfer of α-synuclein. Cell Reports, 2021, 35, 109189.	6.4	8
13	ldentification of sixteen novel candidate genes for late onset Parkinson's disease. Molecular Neurodegeneration, 2021, 16, 35.	10.8	41
14	From structure to ætiology: a new window on the biology of leucine-rich repeat kinase 2 and Parkinson's disease. Biochemical Journal, 2021, 478, 2945-2951.	3.7	3
15	Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochemistry International, 2021, 147, 105070.	3.8	18
16	In silico comparative analysis of LRRK2 interactomes from brain, kidney and lung. Brain Research, 2021, 1765, 147503.	2.2	6
17	Vesicle trafficking and pathways to neurodegeneration. Molecular Neurodegeneration, 2021, 16, 56.	10.8	6
18	Modelling the functional genomics of Parkinson's disease in <i>Caenorhabditis elegans</i> : <i>LRRK2</i> and beyond. Bioscience Reports, 2021, 41, .	2.4	8

#	Article	IF	CITATIONS
19	<i>SORL1</i> mutation in a Greek family with Parkinson's disease and dementia. Annals of Clinical and Translational Neurology, 2021, 8, 1961-1969.	3.7	7
20	Vesicular dysfunction and pathways to neurodegeneration. Essays in Biochemistry, 2021, 65, 941-948.	4.7	5
21	Leucineâ€rich repeat kinase 2 and lysosomal dyshomeostasis in Parkinson disease. Journal of Neurochemistry, 2020, 152, 273-283.	3.9	21
22	Reply to: "Light and Shade in Patrick Lewis et al's Paper on the First Photographs of Parkinson's Disease― Movement Disorders, 2020, 35, 1882-1882.	3.9	0
23	Editorial: Protein Degradation Pathways in Parkinson's Disease and Neurodegeneration. Frontiers in Neuroscience, 2020, 14, 741.	2.8	0
24	C9orf72, age at onset, and ancestry help discriminate behavioral from language variants in FTLD cohorts. Neurology, 2020, 95, e3288-e3302.	1.1	7
25	PINOT: an intuitive resource for integrating protein-protein interactions. Cell Communication and Signaling, 2020, 18, 92.	6.5	21
26	Pierre D. and the First Photographs of Parkinson's Disease. Movement Disorders, 2020, 35, 389-391.	3.9	3
27	Network Analysis for Complex Neurodegenerative Diseases. Current Genetic Medicine Reports, 2020, 8, 17-25.	1.9	14
28	Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.	3.3	9
29	Identification of novel risk loci, causal insights, and heritable risk for Parkinson's disease: a meta-analysis of genome-wide association studies. Lancet Neurology, The, 2019, 18, 1091-1102.	10.2	1,414
30	The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson's disease. Movement Disorders, 2019, 34, 460-468.	3.9	66
31	<scp>DNAJC</scp> proteins and pathways to parkinsonism. FEBS Journal, 2019, 286, 3080-3094.	4.7	37
32	Leucine rich repeat kinase 2: a paradigm for pleiotropy. Journal of Physiology, 2019, 597, 3511-3521.	2.9	12
33	An Introduction to Neurodegeneration. , 2019, , 1-23.		0
34	The Prion Diseases. , 2019, , 123-155.		0
35	Alzheimer's Disease and Dementia. , 2019, , 25-82.		2
36	Vesicular Dysfunction and the Pathogenesis of Parkinson's Disease: Clues From Genetic Studies. Frontiers in Neuroscience, 2019, 13, 1381.	2.8	20

#	Article	IF	CITATIONS
37	Comparative Protein Interaction Network Analysis Identifies Shared and Distinct Functions for the Human ROCO Proteins. Proteomics, 2018, 18, e1700444.	2.2	34
38	Mutations in LRRK2 amplify cell-to-cell protein aggregate propagation: a hypothesis. Acta Neuropathologica, 2018, 135, 973-976.	7.7	4
39	The LRRK2 signalling system. Cell and Tissue Research, 2018, 373, 39-50.	2.9	31
40	mTOR independent alteration in ULK1 Ser758 phosphorylation following chronic LRRK2 kinase inhibition. Bioscience Reports, 2018, 38, .	2.4	16
41	Genome, transcriptome and proteome: the rise of omics data and their integration in biomedical sciences. Briefings in Bioinformatics, 2018, 19, 286-302.	6.5	498
42	Protein network analysis reveals selectively vulnerable regions and biological processes in FTD. Neurology: Genetics, 2018, 4, e266.	1.9	12
43	Coding variation in <i>GBA</i> explains the majority of the SYT11â€GBA Parkinson's disease GWAS locus. Movement Disorders, 2018, 33, 1821-1823.	3.9	28
44	Insights into the Influence of Specific Splicing Events on the Structural Organization of LRRK2. International Journal of Molecular Sciences, 2018, 19, 2784.	4.1	2
45	Stratification of candidate genes for Parkinson's disease using weighted protein-protein interaction network analysis. BMC Genomics, 2018, 19, 452.	2.8	35
46	LRRK2 is a negative regulator of <i>Mycobacterium tuberculosis</i> phagosome maturation in macrophages. EMBO Journal, 2018, 37, .	7.8	140
47	Analysis of macroautophagy related proteins in G2019S LRRK2 Parkinson's disease brains with Lewy body pathology. Brain Research, 2018, 1701, 75-84.	2.2	25
48	Measuring Lactase Enzymatic Activity in the Teaching Lab. Journal of Visualized Experiments, 2018, , .	0.3	6
49	Weighted Protein Interaction Network Analysis of Frontotemporal Dementia. Journal of Proteome Research, 2017, 16, 999-1013.	3.7	39
50	Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. Neurogenetics, 2017, 18, 121-133.	1.4	57
51	Leucine Rich Repeat Kinase 2: beyond Parkinson's and beyond kinase inhibitors. Expert Opinion on Therapeutic Targets, 2017, 21, 751-753.	3.4	6
52	LRRK2 and Autophagy. Advances in Neurobiology, 2017, 14, 89-105.	1.8	54
53	PAK6 Phosphorylates 14-3-3Î ³ to Regulate Steady State Phosphorylation of LRRK2. Frontiers in Molecular Neuroscience, 2017, 10, 417.	2.9	46
54	Estimating the causal influence of body mass index on risk of Parkinson disease: A Mendelian randomisation study. PLoS Medicine, 2017, 14, e1002314.	8.4	152

#	Article	IF	CITATIONS
55	Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain, 2016, 139, 1904-1918.	7.6	170
56	mTOR independent regulation of macroautophagy by Leucine Rich Repeat Kinase 2 via Beclin-1. Scientific Reports, 2016, 6, 35106.	3.3	69
57	Additional rare variant analysis in Parkinson's disease cases with and without known pathogenic mutations: evidence for oligogenic inheritance. Human Molecular Genetics, 2016, 25, ddw348.	2.9	48
58	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
59	Leucineâ€rich repeat kinase 2 interacts with p21â€activated kinase 6 to control neurite complexity in mammalian brain. Journal of Neurochemistry, 2015, 135, 1242-1256.	3.9	57
60	Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Molecular Neurodegeneration, 2015, 10, 41.	10.8	90
61	Parkinson's disease: From human genetics to clinical trials. Science Translational Medicine, 2015, 7, 205ps20.	12.4	39
62	Computational analysis of the LRRK2 interactome. PeerJ, 2015, 3, e778.	2.0	48
63	Parkinson's disease-linked mutations in VPS35 induce dopaminergic neurodegeneration. Human Molecular Genetics, 2014, 23, 4621-4638.	2.9	126
64	GTP binding controls complex formation by the human ROCO protein MASL 1. FEBS Journal, 2014, 281, 261-274.	4.7	13
65	Arsenite Stress Down-regulates Phosphorylation and 14-3-3 Binding of Leucine-rich Repeat Kinase 2 (LRRK2), Promoting Self-association and Cellular Redistribution. Journal of Biological Chemistry, 2014, 289, 21386-21400.	3.4	38
66	Rare variants in LRRK1 and Parkinson's disease. Neurogenetics, 2014, 15, 49-57.	1.4	33
67	Genetic, Structural, and Molecular Insights into the Function of Ras of Complex Proteins Domains. Chemistry and Biology, 2014, 21, 809-818.	6.0	20
68	The Parkinson's disease–linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nature Neuroscience, 2013, 16, 1257-1265.	14.8	292
69	Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2900-2910.	4.1	124
70	Pathogenic Parkinson's disease mutations across the functional domains of LRRK2 alter the autophagic/lysosomal response to starvation. Biochemical and Biophysical Research Communications, 2013, 441, 862-866.	2.1	79
71	Divergent α-synuclein solubility and aggregation properties in C2O19S LRRK2 Parkinson's disease brains with Lewy Body pathology compared to idiopathic cases. Neurobiology of Disease, 2013, 58, 183-190.	4.4	44
72	α-Synuclein mutations cluster around a putative protein loop. Neuroscience Letters, 2013, 546, 67-70.	2.1	36

#	Article	IF	CITATIONS
73	α-Synucleinopathy associated with G51D SNCA mutation: a link between Parkinson's disease and multiple system atrophy?. Acta Neuropathologica, 2013, 125, 753-769.	7.7	369
74	Dysfunction of the autophagy/lysosomal degradation pathway is a shared feature of the genetic synucleinopathies. FASEB Journal, 2013, 27, 3424-3429.	0.5	61
75	LRRK2: Cause, Risk, and Mechanism. Journal of Parkinson's Disease, 2013, 3, 85-103.	2.8	128
76	Fine-Mapping, Gene Expression and Splicing Analysis of the Disease Associated LRRK2 Locus. PLoS ONE, 2013, 8, e70724.	2.5	45
77	Deciphering the function of leucine-rich repeat kinase 2 and targeting its dysfunction in disease. Biochemical Society Transactions, 2012, 40, 1039-1041.	3.4	4
78	LRRK2 and Human Disease: A Complicated Question or a Question of Complexes?. Science Signaling, 2012, 5, pe2.	3.6	64
79	James Parkinson: The Man Behind the Shaking Palsy. Journal of Parkinson's Disease, 2012, 2, 181-187.	2.8	10
80	GTP binding and intramolecular regulation by the ROC domain of Death Associated Protein Kinase 1. Scientific Reports, 2012, 2, 695.	3.3	12
81	Assaying the Kinase Activity of LRRK2 in vitro . Journal of Visualized Experiments, 2012, , .	0.3	3
82	Investigating the utility of human embryonic stem cellâ€derived neurons to model ageing and neurodegenerative disease using wholeâ€genome gene expression and splicing analysis. Journal of Neurochemistry, 2012, 122, 738-751.	3.9	48
83	Gene expression in the Parkinson's disease brain. Brain Research Bulletin, 2012, 88, 302-312.	3.0	42
84	Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research. PLoS ONE, 2012, 7, e43099.	2.5	44
85	Pathogenic LRRK2 Mutations Do Not Alter Gene Expression in Cell Model Systems or Human Brain Tissue. PLoS ONE, 2011, 6, e22489.	2.5	27
86	Parkinson's disease induced pluripotent stem cells with triplication of the α-synuclein locus. Nature Communications, 2011, 2, 440.	12.8	406
87	A Tangled Web – Tau and Sporadic Parkinson's Disease. Frontiers in Psychiatry, 2010, 1, 150.	2.6	27
88	Cancer and Neurodegeneration: Between the Devil and the Deep Blue Sea. PLoS Genetics, 2010, 6, e1001257.	3.5	141
89	The R1441C mutation alters the folding properties of the ROC domain of LRRK2. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2009, 1792, 1194-1197.	3.8	42
90	The genetics of Parkinson's syndromes: a critical review. Current Opinion in Genetics and Development, 2009, 19, 254-265.	3.3	195

#	Article	IF	CITATIONS
91	The function of ROCO proteins in health and disease. Biology of the Cell, 2009, 101, 183-191.	2.0	55
92	Emerging pathways in genetic Parkinson's disease. FEBS Journal, 2008, 275, 5747-5747.	4.7	2
93	Emerging pathways in genetic Parkinson's disease: tangles, Lewy bodies and LRRK2. FEBS Journal, 2008, 275, 5748-5757.	4.7	27
94	DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurology, The, 2008, 7, 207-215.	10.2	202
95	Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1499-1504.	7.1	218
96	The Parkinson Disease-associated Leucine-rich Repeat Kinase 2 (LRRK2) Is a Dimer That Undergoes Intramolecular Autophosphorylation. Journal of Biological Chemistry, 2008, 283, 16906-16914.	3.4	268
97	The Role of LRRK2 Kinase Activity in Cellular PD Models. , 2008, , 423-431.		1
98	Genetic neuropathology of Parkinson's disease. International Journal of Clinical and Experimental Pathology, 2008, 1, 217-31.	0.5	70
99	The Metalloprotease Inhibitor TIMP-3 Regulates Amyloid Precursor Protein and Apolipoprotein E Receptor Proteolysis. Journal of Neuroscience, 2007, 27, 10895-10905.	3.6	67
100	Mad Fly Disease. Journal of Neuroscience, 2007, 27, 971-972.	3.6	2
101	The R1441C mutation of LRRK2 disrupts GTP hydrolysis. Biochemical and Biophysical Research Communications, 2007, 357, 668-671.	2.1	244
102	Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. Journal of Neurochemistry, 2007, 102, 93-102.	3.9	78
103	Removal of the glycosylphosphatidylinositol anchor from PrPSc by cathepsin D does not reduce prion infectivity. Biochemical Journal, 2006, 395, 443-448.	3.7	23
104	Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 2006, 23, 329-341.	4.4	683
105	Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. Journal of General Virology, 2006, 87, 2443-2449.	2.9	28
106	A Presenilin 1 Mutation Associated with Familial Frontotemporal Dementia Inhibits Î ³ -Secretase Cleavage of APP and Notch. Neurobiology of Disease, 2002, 9, 269-273.	4.4	92
107	Familial Frontotemporal Dementia Associated with a Novel Presenilin-1 Mutation. Dementia and Geriatric Cognitive Disorders, 2002, 14, 13-21.	1.5	68
108	Presenilin 1 Regulates Pharmacologically Distinct γ-Secretase Activities. Journal of Biological Chemistry, 2000, 275, 26277-26284.	3.4	93

#	Article	IF	CITATIONS
109	Cellâ€free assays for γâ€secretase activity. FASEB Journal, 2000, 14, 2383-2386.	0.5	108
110	The Presenilin 1 C92S Mutation Increases Al ² 42 Production. Biochemical and Biophysical Research Communications, 2000, 277, 261-263.	2.1	19