Chee Kai Chua

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/9353475/chee-kai-chua-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19,581 69 271 135 h-index g-index citations papers 6.4 383 22,739 7.35 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
271	3D printed electronics: Processes, materials and future trends. <i>Progress in Materials Science</i> , 2022 , 127, 100945	42.2	11
270	Systematic Engineering approach for optimization of multi-component alternative protein-fortified 3D printing food Ink. <i>Food Hydrocolloids</i> , 2022 , 131, 107803	10.6	1
269	Reversible 4D printing 2022 , 395-417		
268	Bioprinting of 3D Functional Tissue Constructs. International Journal of Bioprinting, 2021, 7, 395	6.2	2
267	Three-Dimensional Printing of Food Foams Stabilized by Hydrocolloids for Hydration in Dysphagia. <i>International Journal of Bioprinting</i> , 2021 , 7, 393	6.2	4
266	Computer Aided Tissue Engineering Scaffolds 2021 , 77-94		
265	Fouling mitigation in reverse osmosis processes with 3D printed sinusoidal spacers. <i>Water Research</i> , 2021 , 207, 117818	12.5	6
264	Additive Manufacturing and 3D Printing 2021 , 621-652		1
263	Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing. <i>Virtual and Physical Prototyping</i> , 2021 , 16, 372-386	10.1	39
262	A review on spacers and membranes: Conventional or hybrid additive manufacturing?. <i>Water Research</i> , 2021 , 188, 116497	12.5	20
261	3D food printing of fresh vegetables using food hydrocolloids for dysphagic patients. <i>Food Hydrocolloids</i> , 2021 , 114, 106546	10.6	52
260	Application of Machine Learning in 3D Bioprinting: Focus on Development of Big Data and Digital Twin. <i>International Journal of Bioprinting</i> , 2021 , 7, 342	6.2	13
259	Recent Advances on High-Entropy Alloys for 3D Printing. <i>Advanced Materials</i> , 2020 , 32, e1903855	24	126
258	Deep learning for fabrication and maturation of 3D bioprinted tissues and organs. <i>Virtual and Physical Prototyping</i> , 2020 , 15, 340-358	10.1	39
257	Acoustic absorptions of multifunctional polymeric cellular structures based on triply periodic minimal surfaces fabricated by stereolithography. <i>Virtual and Physical Prototyping</i> , 2020 , 15, 242-249	10.1	38
256	3D Printing of Polymeric Multi-Layer Micro-Perforated Panels for Tunable Wideband Sound Absorption. <i>Polymers</i> , 2020 , 12,	4.5	14
255	Bioprinting of 3D in vitro skeletal muscle models: A review. <i>Materials and Design</i> , 2020 , 193, 108794	8.1	27

254	Introduction to rapid prototyping of biomaterials 2020 , 1-15		2
253	Induction Sintering of Silver Nanoparticle Inks on Polyimide Substrates. <i>Advanced Materials Technologies</i> , 2020 , 5, 1900897	6.8	25
252	Microstructure evolution and mechanical property response via 3D printing parameter development of AlBc alloy. <i>Virtual and Physical Prototyping</i> , 2020 , 15, 120-129	10.1	76
251	Contactless reversible 4D-printing for 3D-to-3D shape morphing. <i>Virtual and Physical Prototyping</i> , 2020 , 15, 481-495	10.1	17
250	Effect of nAl2O3 on the part density and microstructure during the laser-based powder bed fusion of AlSi10Mg composite. <i>Rapid Prototyping Journal</i> , 2020 , 26, 727-735	3.8	4
249	The global rise of 3D printing during the COVID-19 pandemic <i>Nature Reviews Materials</i> , 2020 , 5, 637-63	3 9 3.3	100
248	Preliminary Investigation of the Reversible 4D Printing of a Dual-Layer Component. <i>Engineering</i> , 2019 , 5, 1159-1170	9.7	26
247	Layer-by-layer ultraviolet assisted extrusion-based (UAE) bioprinting of hydrogel constructs with high aspect ratio for soft tissue engineering applications. <i>PLoS ONE</i> , 2019 , 14, e0216776	3.7	56
246	Particle-reinforced metal matrix nanocomposites fabricated by selective laser melting: A state of the art review. <i>Progress in Materials Science</i> , 2019 , 104, 330-379	42.2	188
245	Metallic Nanoparticle Inks for 3D Printing of Electronics. <i>Advanced Electronic Materials</i> , 2019 , 5, 180083	1 6.4	92
244	3D food printing: a categorised review of inks and their development. <i>Virtual and Physical Prototyping</i> , 2019 , 14, 203-218	10.1	58
243	Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. <i>Journal of Alloys and Compounds</i> , 2019 , 792, 574-581	5.7	146
242	Print Me An Organ! Why We Are Not There Yet. <i>Progress in Polymer Science</i> , 2019 , 97, 101145	29.6	109
241	Polymeric composites for powder-based additive manufacturing: Materials and applications. <i>Progress in Polymer Science</i> , 2019 , 91, 141-168	29.6	201
240	Improvement of densification and microstructure of ASTM A131 EH36 steel samples additively manufactured via selective laser melting with varying laser scanning speed and hatch spacing. Materials Science & Danger Engineering A: Structural Materials: Properties, Microstructure and Processing	5.3	27
239	, 2019 , 746, 300-313 3D-Printed Mechanical Metamaterials with High Energy Absorption. <i>Advanced Materials Technologies</i> , 2019 , 4, 1800419	6.8	93
238	Density Functional Theory Study of Mn+1AXn Phases: A Review. <i>Critical Reviews in Solid State and Materials Sciences</i> , 2019 , 44, 56-107	10.1	30
237	Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. <i>NPG Asia Materials</i> , 2018 , 10, 127-136	10.3	228

236	Fabrication of SLM NiTi Shape Memory Alloy via Repetitive Laser Scanning. <i>Shape Memory and Superelasticity</i> , 2018 , 4, 112-120	2.8	28
235	Joining of 3D-printed AlSi10Mg by friction stir welding. <i>Welding in the World, Le Soudage Dans Le Monde</i> , 2018 , 62, 675-682	1.9	11
234	Advanced Material Strategies for Next-Generation Additive Manufacturing. <i>Materials</i> , 2018 , 11,	3.5	53
233	Design and 4D Printing of Cross-Folded Origami Structures: A Preliminary Investigation. <i>Materials</i> , 2018 , 11,	3.5	32
232	A Review of Selective Laser Melted NiTi Shape Memory Alloy. <i>Materials</i> , 2018 , 11,	3.5	58
231	Call for 2nd Editorial Board Meeting: A milestone for IJB. <i>International Journal of Bioprinting</i> , 2018 , 4,	6.2	78
230	Effect of Heat Treatment on Repetitively Scanned SLM NiTi Shape Memory Alloy. <i>Materials</i> , 2018 , 12,	3.5	23
229	Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 105, 203-213	8.4	81
228	Development of process efficiency maps for selective laser sintering of polymeric composite powders: Modeling and experimental testing. <i>Journal of Materials Processing Technology</i> , 2018 , 254, 52-59	5.3	34
227	Modeling temperature and residual stress fields in selective laser melting. <i>International Journal of Mechanical Sciences</i> , 2018 , 136, 24-35	5.5	112
226	3D neural tissue models: From spheroids to bioprinting. <i>Biomaterials</i> , 2018 , 154, 113-133	15.6	154
225	Investigation of porosity reduction, microstructure and mechanical properties for joining of selective laser melting fabricated aluminium composite via friction stir welding. <i>Journal of Manufacturing Processes</i> , 2018 , 36, 33-43	5	11
224	Heat transfer and phase transition in the selective laser melting process. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 108, 2408-2416	4.9	45
223	3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. <i>Materials and Design</i> , 2017 , 120, 317-327	8.1	120
222	Toughening of polyamide 11 with carbon nanotubes for additive manufacturing. <i>Virtual and Physical Prototyping</i> , 2017 , 12, 235-240	10.1	32
221	Comparison of solid, liquid and powder forms of 3D printing techniques in membrane spacer fabrication. <i>Journal of Membrane Science</i> , 2017 , 537, 283-296	9.6	50
220	Emerging 3D-Printed Electrochemical Energy Storage Devices: A Critical Review. <i>Advanced Energy Materials</i> , 2017 , 7, 1700127	21.8	212
219	Selective laser melting of nickel powder. <i>Rapid Prototyping Journal</i> , 2017 , 23, 750-757	3.8	24

(2017-2017)

218	Fatigue damage evolution and lifetime prediction of welded joints with the consideration of residual stresses and porosity. <i>International Journal of Fatigue</i> , 2017 , 103, 272-279	5	46
217	Fundamentals and applications of 3D printing for novel materials. <i>Applied Materials Today</i> , 2017 , 7, 120	-16363	622
216	A review: additive manufacturing for active electronic components. <i>Virtual and Physical Prototyping</i> , 2017 , 12, 31-46	10.1	79
215	Hierarchically self-morphing structure through 4D printing. <i>Virtual and Physical Prototyping</i> , 2017 , 12, 61-68	10.1	48
214	Multi-stage responsive 4D printed smart structure through varying geometric thickness of shape memory polymer. <i>Smart Materials and Structures</i> , 2017 , 26, 125001	3.4	36
213	Material Characterization for Additive Manufacturing 2017 , 95-137		2
212	Process Control and Modeling 2017 , 159-179		1
211	Quality Management Framework in Additive Manufacturing 2017 , 213-239		2
210	Benchmarking for Additive Manufacturing 2017 , 181-212		12
209	Software and Data Format 2017 , 75-94		1
208	Measurement Science Roadmap for Additive Manufacturing 2017 , 57-73		1
207	Introduction to 3D Printing or Additive Manufacturing 2017 , 1-29		3
206	A highly printable and biocompatible hydrogel composite for direct printing of soft and perfusable vasculature-like structures. <i>Scientific Reports</i> , 2017 , 7, 16902	4.9	98
205	Two-Way 4D Printing: A Review on the Reversibility of 3D-Printed Shape Memory Materials. <i>Engineering</i> , 2017 , 3, 663-674	9.7	155
204	Bioprinting of Thermoresponsive Hydrogels for Next Generation Tissue Engineering: A Review. <i>Macromolecular Materials and Engineering</i> , 2017 , 302, 1600266	3.9	109
203	Roadmap on Additive Manufacturing Standards 2017 , 31-55		4
202	Equipment Qualification 2017 , 139-157		2
201	3D Printing and Additive Manufacturing 2017 ,		84

200	Lasers in 3D Printing and Manufacturing 2017 ,		6
199	Lessons learnt from an LCA based re-design for manufacture of soap dispensers 2017 , 243-248		1
198	Roles of support materials in 3D bioprinting - Present and future. <i>International Journal of Bioprinting</i> , 2017 , 3, 006	6.2	29
197	Designing with people for inclusive growth 2017 , 127-131		
196	Badminton shuttlecock stability: Modelling and simulating the angular response of the turnover. <i>Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology</i> , 2016 , 230, 111-120	0.7	1
195	A review of printed passive electronic components through fully additive manufacturing methods. <i>Virtual and Physical Prototyping</i> , 2016 , 11, 271-288	10.1	79
194	Processing and Properties of Construction Materials for 3D Printing. <i>Materials Science Forum</i> , 2016 , 861, 177-181	0.4	52
193	Reduced graphene oxide/silver hybrid with N,N-dimethyl formamide for oxygen reduction reactions and surface enhanced Raman scattering. <i>RSC Advances</i> , 2016 , 6, 102519-102527	3.7	5
192	Revealing martensitic transformation and 畑nterface evolution in electron beam melting three-dimensional-printed Ti-6Al-4V. <i>Scientific Reports</i> , 2016 , 6, 26039	4.9	96
191	The potential to enhance membrane module design with 3D printing technology. <i>Journal of Membrane Science</i> , 2016 , 499, 480-490	9.6	178
190	Effect of gas plasma on polycaprolactone (PCL) membrane wettability and collagen type I immobilized for enhancing cell proliferation. <i>Materials Letters</i> , 2016 , 171, 293-296	3.3	25
189	A Perspective on 4D Bioprinting. International Journal of Bioprinting, 2016, 2,	6.2	66
188	Advancing cancer research using bioprinting for tumor-on-a-chip platforms. <i>International Journal of Bioprinting</i> , 2016 , 2,	6.2	44
187	An engineering perspective on 3D printed personalized scaffolds for tracheal suspension technique. <i>Journal of Thoracic Disease</i> , 2016 , 8, E1723-E1725	2.6	8
186	A Mathematical Model on the Resolution of Extrusion Bioprinting for the Development of New Bioinks. <i>Materials</i> , 2016 , 9,	3.5	82
185	A Solvent-Free Surface Suspension Melt Technique for Making Biodegradable PCL Membrane Scaffolds for Tissue Engineering Applications. <i>Molecules</i> , 2016 , 21, 386	4.8	2
184	Material Evaluation and Process Optimization of CNT-Coated Polymer Powders for Selective Laser Sintering. <i>Polymers</i> , 2016 , 8,	4.5	68
183	Dispersion of CNTs in Selective Laser Melting Printed AlSi10Mg Composites via Friction Stir Processing. <i>Materials Science Forum</i> , 2016 , 879, 1915-1920	0.4	7

(2015-2016)

182	Energy Absorption of Thermoplastic Polyurethane Lattice Structures via 3D Printing: Modeling and Prediction. <i>International Journal of Applied Mechanics</i> , 2016 , 08, 1640006	2.4	37
181	Characterization of Creeping and Shape Memory Effect in Laser Sintered Thermoplastic Polyurethane. <i>Journal of Computing and Information Science in Engineering</i> , 2016 , 16,	2.4	26
180	An effective analytical model of selective laser melting. Virtual and Physical Prototyping, 2016, 11, 21-2	610.1	47
179	Highly enhanced thermal conductivity of thermoplastic nanocomposites with a low mass fraction of MWCNTs by a facilitated latex approach. <i>Composites Part A: Applied Science and Manufacturing</i> , 2016 , 90, 699-710	8.4	60
178	3D printing by selective laser sintering of polypropylene feed channel spacers for spiral wound membrane modules for the water industry. <i>Virtual and Physical Prototyping</i> , 2016 , 11, 151-158	10.1	44
177	Investigation of the size effect for photonic crystals. <i>Nanotechnology</i> , 2016 , 27, 405703	3.4	7
176	Geometry dependence of microstructure and microhardness for selective electron beam-melted TiBAlaV parts. <i>Virtual and Physical Prototyping</i> , 2016 , 11, 183-191	10.1	35
175	Computational Design and Simulation 2015 , 207-254		1
174	Graded microstructure and mechanical properties of additive manufactured TiBAlBV via electron beam melting. <i>Acta Materialia</i> , 2015 , 97, 1-16	8.4	395
173	Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. <i>Materials Characterization</i> , 2015 , 107, 220-227	3.9	115
172	Analysis and simulation of badminton shuttlecock flight through parameter identification of a slow-speed serve shot. <i>Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology</i> , 2015 , 229, 213-221	0.7	2
171	Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting. Journal of Materials Science and Technology, 2015 , 31, 946-952	9.1	236
170	3D printing of smart materials: A review on recent progresses in 4D printing. <i>Virtual and Physical Prototyping</i> , 2015 , 10, 103-122	10.1	503
169	Effect of surface orientation on the tribological properties of laser sintered polyamide 12. <i>Polymer Testing</i> , 2015 , 48, 111-114	4.5	25
168	Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar micro-supercapacitors. <i>Electrochemistry Communications</i> , 2015 , 51, 33-36	5.1	147
167	Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061. <i>International Journal of Heat and Mass Transfer</i> , 2015 , 80, 288-300	4.9	256
166	Design and 3D Printing of Scaffolds and Tissues. <i>Engineering</i> , 2015 , 1, 261-268	9.7	255
165	Review of selective laser melting: Materials and applications. <i>Applied Physics Reviews</i> , 2015 , 2, 041101	17.3	1001

164	Biodegradable Polymeric Films and Membranes Processing and Forming for Tissue Engineering. <i>Macromolecular Materials and Engineering</i> , 2015 , 300, 858-877	3.9	36
163	Thermal Influence of CNT on the Polyamide 12 Nanocomposite for Selective Laser Sintering. <i>Molecules</i> , 2015 , 20, 19041-50	4.8	55
162	Smooth Muscle Cell Alignment and Phenotype Control by Melt Spun Polycaprolactone Fibers for Seeding of Tissue Engineered Blood Vessels. <i>International Journal of Biomaterials</i> , 2015 , 2015, 434876	3.2	26
161	Fabrication and microstructural characterisation of additive manufactured Ti-6Al-4V parts by electron beam melting. <i>Virtual and Physical Prototyping</i> , 2015 , 10, 13-21	10.1	65
160	An experimental and simulation study on build thickness dependent microstructure for electron beam melted TiBAlav. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 303-309	5.7	81
159	Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting. <i>Virtual and Physical Prototyping</i> , 2015 , 10, 207-215	10.1	64
158	Investigation on processing of ASTM A131 Eh36 high tensile strength steel using selective laser melting This paper was adapted from the original manuscript titled Preliminary Investigation on SLM of ASTM A131 EH36 High Tensile Strength Steel for Shipbuilding Applications Bubmitted to	10.1	21
157	the 1st International Conference on Progress in Additive Manufacturing (Pro-AM 2014) held in Singapore from 26th to 28th May 2014. View all notes. <i>Virtual and Physical Prototyping</i> , 2015 , 10, 187-19 Bioprinting 2015 ,	93	32
156	A novel 3D printing method for cell alignment and differentiation. <i>International Journal of Bioprinting</i> , 2015 ,	6.2	10
155	Rapid Tooling in Manufacturing 2015 , 2525-2549		9
155 154	Rapid Tooling in Manufacturing 2015 , 2525-2549 Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical Prototyping</i> , 2014 , 9, 11-16	10.1	9 47
	Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical</i>	10.1 3.9	
154	Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical Prototyping</i> , 2014 , 9, 11-16 Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion		47
154 153	Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical Prototyping</i> , 2014 , 9, 11-16 Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. <i>Materials Characterization</i> , 2014 , 94, 116-125 A 3D biomimetic model of tissue stiffness interface for cancer drug testing. <i>Molecular</i>	3.9	47 174
154 153 152	Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical Prototyping</i> , 2014 , 9, 11-16 Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. <i>Materials Characterization</i> , 2014 , 94, 116-125 A 3D biomimetic model of tissue stiffness interface for cancer drug testing. <i>Molecular Pharmaceutics</i> , 2014 , 11, 2016-21	3.9	47 174
154 153 152	Selective Laser Melting of aluminium alloy using a uniform beam profile. <i>Virtual and Physical Prototyping</i> , 2014 , 9, 11-16 Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. <i>Materials Characterization</i> , 2014 , 94, 116-125 A 3D biomimetic model of tissue stiffness interface for cancer drug testing. <i>Molecular Pharmaceutics</i> , 2014 , 11, 2016-21 Introduction to Tissue Engineering 2014 , 1-39 Influence of Ni content on microstructure of WNii alloy produced by selective laser melting.	3.9 5.6	47 174 37
154 153 152 151	Selective Laser Melting of aluminium alloy using a uniform beam profile. Virtual and Physical Prototyping, 2014, 9, 11-16 Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Materials Characterization, 2014, 94, 116-125 A 3D biomimetic model of tissue stiffness interface for cancer drug testing. Molecular Pharmaceutics, 2014, 11, 2016-21 Introduction to Tissue Engineering 2014, 1-39 Influence of Ni content on microstructure of WNi alloy produced by selective laser melting. International Journal of Refractory Metals and Hard Materials, 2014, 45, 15-22 Comparison study of fabrication of ceramic rotor using various manufacturing methods. Ceramics	3.9 5.6 4.1	47 174 37

146	Introduction to rapid prototyping of biomaterials 2014 , 1-15		11
145	Aerodynamics of badminton shuttlecock: Characterization of flow around a conical skirt with gaps, behind a hemispherical dome. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2014 , 127, 29-39	3 .7	7
144	3D Printing and Additive Manufacturing 2014 ,		121
143	State-of-the-Art Review on Selective Laser Melting of Non-Ferrous Metals 2014 ,		4
142	Selective Laser Melting: On the Study of Microstructure of K220 2014 ,		4
141	Application of Electron Beam Melting (EBM) in Additive Manufacturing of an Impeller 2014,		9
140	Crystal structure analysis of M2 high speed steel parts produced by selective laser melting. <i>Materials Characterization</i> , 2013 , 84, 72-80	3.9	81
139	A mathematical model for fluid shear-sensitive 3D tissue construct development. <i>Biomechanics and Modeling in Mechanobiology</i> , 2013 , 12, 19-31	3.8	13
138	Turnover Stability of Shuttlecocks - Transient Angular Response and Impact Deformation of Feather and Synthetic Shuttlecocks. <i>Procedia Engineering</i> , 2013 , 60, 106-111		4
137	The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography. <i>Medical Engineering and Physics</i> , 2013 , 35, 253-62	2.4	24
136	Clothing polymer fibers with well-aligned and high-aspect ratio carbon nanotubes. <i>Nanoscale</i> , 2013 , 5, 2870-4	7.7	33
135	Foreword. Advanced nanobiomaterials for tissue engineering and regenerative medicine. <i>Nanomedicine</i> , 2013 , 8, 501-3	5.6	2
134	A generic micropatterning platform to direct human mesenchymal stem cells from different origins towards myogenic differentiation. <i>Macromolecular Bioscience</i> , 2013 , 13, 799-807	5.5	13
133	Advanced nanobiomaterial strategies for the development of organized tissue engineering constructs. <i>Nanomedicine</i> , 2013 , 8, 591-602	5.6	32
132	Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique. <i>Biomedical Microdevices</i> , 2013 , 15, 83-96	3.7	38
131	Impact of short-term perfusion on cell retention for 3D bioconstruct development. <i>Journal of Biomedical Materials Research - Part A</i> , 2013 , 101, 647-52	5.4	1
130	Monitoring cell proliferation in silk fibroin scaffolds using spectroscopic optical coherence tomography. <i>Microwave and Optical Technology Letters</i> , 2013 , 55, 2587-2594	1.2	2
129	Design of high performance badminton shuttlecocks: virtual and rapid prototyping approach. <i>Virtual and Physical Prototyping</i> , 2013 , 8, 165-171	10.1	6

128	A quality management framework for implementing additive manufacturing of medical devices. <i>Virtual and Physical Prototyping</i> , 2013 , 8, 193-199	10.1	14
127	Effect of laser beam profile on melt track in Selective Laser Melting 2013 , 83-87		1
126	State-of-the-art review on selective laser melting of ceramics 2013 , 65-70		9
125	Classical Lamination Theory applied on parts produced by Selective Laser Melting 2013 , 77-82		1
124	Investigation on forming process of copper alloys via Selective Laser Melting 2013 , 285-289		15
123	Implementing Additive Manufacturing for medical devices 2013 , 115-120		4
122	Single track and single layer melting of silica by Selective Laser Melting 2013 , 261-265		4
121	Preparation and flowability characterization of ceramic powders for Selective Laser Melting 2013, 267-	-271	2
120	Melt characterisation of M2 High Speed Steel in Selective Laser Melting 2013 , 279-284		
119	Rapid Tooling in Manufacturing 2013 , 1-22		2
119	Rapid Tooling in Manufacturing 2013, 1-22 Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012, 109, 1-15	4.9	46
	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and</i>	4.9	
118	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 1-15 The development of computer-aided system for tissue scaffolds (CASTS) system for functionally		46
118	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 1-15 The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. <i>Methods in Molecular Biology</i> , 2012 , 868, 111-23 Microstructural Investigation of M2 High Speed Steel Produced by Selective Laser Melting:		46
118 117 116	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 1-15 The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. <i>Methods in Molecular Biology</i> , 2012 , 868, 111-23 Microstructural Investigation of M2 High Speed Steel Produced by Selective Laser Melting: Microstructural Investigation of M2 High Speed Steel 2012 , Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for	1.4	46 8 3
118 117 116	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 1-15 The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. <i>Methods in Molecular Biology</i> , 2012 , 868, 111-23 Microstructural Investigation of M2 High Speed Steel Produced by Selective Laser Melting: Microstructural Investigation of M2 High Speed Steel 2012 , Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. <i>Biomedical Microdevices</i> , 2012 , 14, 863-72 Improving the process of making rapid prototyping models from medical ultrasound images. <i>Rapid</i>	1.4 3·7	46 8 3 28
118 117 116 115	Esophageal tissue engineering: an in-depth review on scaffold design. <i>Biotechnology and Bioengineering</i> , 2012 , 109, 1-15 The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds. <i>Methods in Molecular Biology</i> , 2012 , 868, 111-23 Microstructural Investigation of M2 High Speed Steel Produced by Selective Laser Melting: Microstructural Investigation of M2 High Speed Steel 2012 , Solvent-free fabrication of three dimensionally aligned polycaprolactone microfibers for engineering of anisotropic tissues. <i>Biomedical Microdevices</i> , 2012 , 14, 863-72 Improving the process of making rapid prototyping models from medical ultrasound images. <i>Rapid Prototyping Journal</i> , 2012 , 18, 287-298 A novel bone scaffold design approach based on shape function and all-hexahedral mesh	3.7 3.8	46 8 3 28

(2009-2011)

110	Gas turbine blade manufacturing by use of epoxy resin tooling and silicone rubber molding techniques. <i>Rapid Prototyping Journal</i> , 2011 , 17, 107-115	3.8	22
109	Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. <i>Acta Biomaterialia</i> , 2011 , 7, 530-7	10.8	160
108	Selective laser sintering of functionally graded tissue scaffolds. MRS Bulletin, 2011, 36, 1006-1014	3.2	33
107	A preliminary investigation on Selective Laser Melting of M2 high speed steel 2011 , 339-346		16
106	An Additive Manufacturing method based on xerography 2011 , 603-607		1
105	A Portable Device for Fabricating Biomaterial Microfiber Bundles. <i>Key Engineering Materials</i> , 2010 , 447-448, 750-754	0.4	1
104	Indirect fabrication of gelatin scaffolds using rapid prototyping technology. <i>Virtual and Physical Prototyping</i> , 2010 , 5, 45-53	10.1	37
103	Properties of Test Coupons Fabricated by Selective Laser Melting. <i>Key Engineering Materials</i> , 2010 , 447-448, 780-784	0.4	20
102	Selective laser sintering adaptation tools for cost effective fabrication of biomedical prototypes. <i>Rapid Prototyping Journal</i> , 2010 , 16, 90-99	3.8	25
101	Modeling of powder particle heat transfer process in selective laser sintering for fabricating tissue engineering scaffolds. <i>Rapid Prototyping Journal</i> , 2010 , 16, 400-410	3.8	31
100	Multimedia courseware for teaching of rapid prototyping systems. <i>Rapid Prototyping Journal</i> , 2010 , 16, 80-89	3.8	9
99	Fibroblast response to interstitial flow: A state-of-the-art review. <i>Biotechnology and Bioengineering</i> , 2010 , 107, 1-10	4.9	18
98	Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. <i>Acta Biomaterialia</i> , 2010 , 6, 2028-34	10.8	271
97	Rapid Prototyping 2010 ,		217
96	Biomanufacturing for tissue engineering: Present and future trends. <i>Virtual and Physical Prototyping</i> , 2009 , 4, 203-216	10.1	114
95	Spinning of biomaterial microfibers for tendon tissue engineering 2009,		1
94	Process flow for designing functionally graded tissue engineering scaffolds 2009,		1
93	Specialized Fabrication Processes: Rapid Prototyping 2009 , 493-523		2

92	Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. <i>Journal of Materials Science:</i> Materials in Medicine, 2008 , 19, 989-96	4.5	90
91	Melt flow behaviour of poly-epsilon-caprolactone in fused deposition modelling. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 2541-50	4.5	161
90	Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2008 , 84, 17-25	3.5	137
89	Engineering functionally graded tissue engineering scaffolds. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2008 , 1, 140-52	4.1	236
88	Computer Aided Tissue Engineering Scaffold Fabrication 2008 , 67-85		10
87	Compressive properties and degradability of poly(epsilon-caprolatone)/hydroxyapatite composites under accelerated hydrolytic degradation. <i>Journal of Biomedical Materials Research - Part A</i> , 2007 , 80, 655-60	5.4	69
86	Comparison of drying methods in the fabrication of collagen scaffold via indirect rapid prototyping. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007 , 82, 260-6	3.5	49
85	Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. <i>Acta Biomaterialia</i> , 2007 , 3, 1-12	10.8	330
84	Modelling of Extrusion Behaviour of Biopolymer and Composites in Fused Deposition Modelling. <i>Key Engineering Materials</i> , 2007 , 334-335, 1241-1244	0.4	23
83	Characterization of a poly-epsilon-caprolactone polymeric drug delivery device built by selective laser sintering. <i>Bio-Medical Materials and Engineering</i> , 2007 , 17, 147-57	1	12
82	Indirect fabrication of collagen scaffold based on inkjet printing technique. <i>Rapid Prototyping Journal</i> , 2006 , 12, 229-237	3.8	82
81	Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. <i>Rapid Prototyping Journal</i> , 2006 , 12, 100-105	3.8	171
80	Application of rapid prototyping and computational fluid dynamics in the development of water flow regulating valves. <i>International Journal of Advanced Manufacturing Technology</i> , 2006 , 30, 828-835	3.2	7
79	Building Porous Biopolymeric Microstructures for Controlled Drug Delivery Devices Using Selective Laser Sintering. <i>International Journal of Advanced Manufacturing Technology</i> , 2006 , 31, 483-489	3.2	55
78	Fabrication of customised scaffolds using computer-aided design and rapid prototyping techniques. <i>Rapid Prototyping Journal</i> , 2005 , 11, 249-259	3.8	109
77	Application of rapid prototyping and tooling in customised airway management. <i>Rapid Prototyping Journal</i> , 2005 , 11, 106-112	3.8	1
76	Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. <i>International Journal of Advanced Manufacturing Technology</i> , 2005 , 25, 308-320	3.2	180
75	Rapid prototyping in the development of optical pickup unit. <i>International Journal of Advanced Manufacturing Technology</i> , 2005 , 25, 484-492	3.2	3

(2002-2005)

74	Rapid investment casting: direct and indirect approaches via model maker II. <i>International Journal of Advanced Manufacturing Technology</i> , 2005 , 25, 26-32	3.2	70
73	Fabrication and characterization of three-dimensional poly(ether- ether- ketone)/-hydroxyapatite biocomposite scaffolds using laser sintering. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2005 , 219, 183-94	1.7	104
72	Selective laser sintering of biocompatible polymers for applications in tissue engineering. <i>Bio-Medical Materials and Engineering</i> , 2005 , 15, 113-24	1	56
71	Automatic algorithm for generating complex polyhedral scaffold structures for tissue engineering. <i>Tissue Engineering</i> , 2004 , 10, 595-610		86
70	Enhanced Learning of Rapid Prototyping Systems through Multimedia. <i>International Journal of Mechanical Engineering Education</i> , 2004 , 32, 115-125	0.6	2
69	Rapid prototyping in tissue engineering: challenges and potential. <i>Trends in Biotechnology</i> , 2004 , 22, 643-52	15.1	658
68	Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. <i>Journal of Materials Science: Materials in Medicine</i> , 2004 , 15, 1113-21	4.5	196
67	Rapid investment casting: direct and indirect approaches via fused deposition modelling. <i>International Journal of Advanced Manufacturing Technology</i> , 2004 , 23, 93-101	3.2	94
66	Polymer-based stents produced by rapid prototyping and tooling. <i>International Journal of Product Development</i> , 2004 , 1, 172	0.7	1
65	Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 1: Investigation and Classification. <i>International Journal of Advanced Manufacturing Technology</i> , 2003 , 21, 291-301	3.2	171
64	Development of a Tissue Engineering Scaffold Structure Library for Rapid Prototyping. Part 2: Parametric Library and Assembly Program. <i>International Journal of Advanced Manufacturing Technology</i> , 2003 , 21, 302-312	3.2	105
63	Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. <i>Biomaterials</i> , 2003 , 24, 2363-78	15.6	835
62	Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. <i>Biomaterials</i> , 2003 , 24, 3115-23	15.6	481
61	Rapid manufacturing techniques in the development of an axial blood pump impeller. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2003 , 217, 469-75	1.7	14
60	Rapid Prototyping 2003 ,		304
59	RAPID PROTOTYPING PROCESS CHAIN 2003 , 25-34		3
58	GENERATION OF THREE-DIMENSIONAL SHAPES IN CAD/CAM SYSTEMS USING ART-TO-PART TECHNIQUE 2003 , 1-33		
57	Investigation of 3D Non-Random Porous Structures by Fused Deposition Modelling. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 19, 217-223	3.2	90

56	Rapid Sheet Metal Manufacturing. Part 1: Indirect Rapid Tooling. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 19, 411-417	3.2	25
55	Rapid Sheet Metal Manufacturing. Part 2: Direct Rapid Tooling. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 19, 510-515	3.2	29
54	Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices. Part 2: Secondary Powder Deposition. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 19, 679-687	3.2	23
53	Rapid Prototyping and Tooling of Custom-Made Tracheobronchial Stents. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 20, 44-49	3.2	19
52	Rapid Moulding Using Epoxy Tooling Resin. <i>International Journal of Advanced Manufacturing Technology</i> , 2002 , 20, 368-374	3.2	31
51	The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. <i>Tissue Engineering</i> , 2002 , 8, 1-11		616
50	Characterization of microfeatures in selective laser sintered drug delivery devices. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2002 , 216, 369-83	1.7	69
49	Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices. Part 1: Space Creation. <i>International Journal of Advanced Manufacturing Technology</i> , 2001 , 18, 717-723	3.2	27
48	Rapid Prototyping Applications in Medicine. Part 1: NURBS-Based Volume Modelling. <i>International Journal of Advanced Manufacturing Technology</i> , 2001 , 18, 103-117	3.2	34
47	Rapid Prototyping Applications in Medicine. Part 2: STL File Generation and Case Studies. <i>International Journal of Advanced Manufacturing Technology</i> , 2001 , 18, 118-127	3.2	29
46	Fabrication of porous polymeric matrix drug delivery devices using the selective laser sintering technique. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2001 , 215, 191-201	1.7	70
45	Feasibility of tissue engineering scaffold fabrication using fused deposition modelling 2001,		6
44	Characterization of SLS parts for drug delivery devices. <i>Rapid Prototyping Journal</i> , 2001 , 7, 262-268	3.8	68
43	The design of scaffolds for use in tissue engineering. Part I. Traditional factors. <i>Tissue Engineering</i> , 2001 , 7, 679-89		1809
42	Study of Trapped Material in Rapid Prototyping Parts. <i>International Journal of Advanced Manufacturing Technology</i> , 2000 , 16, 120-130	3.2	21
41	Development of an Advisory System for Trapped Material in Rapid Prototyping Parts. <i>International Journal of Advanced Manufacturing Technology</i> , 2000 , 16, 733-738	3.2	10
40	Determination of the major dimensions of femoral implants using morphometrical data and principal component analysis. <i>Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine</i> , 2000 , 214, 301-9	1.7	10
39	Facial prosthetic model fabrication using rapid prototyping tools. <i>Journal of Manufacturing</i> Technology Management, 2000 , 11, 42-53		38

38	Kinematic analysis of total knee prosthesis designed for Asian population. <i>Critical Reviews in Biomedical Engineering</i> , 2000 , 28, 33-40	1.1	13	
37	PC-based Virtual Reality Surgical Simulation for Orthognathic Surgery. <i>Lecture Notes in Computer Science</i> , 2000 , 1019-1028	0.9	2	
36	Development of a new rapid prototyping interface. <i>Computers in Industry</i> , 1999 , 39, 61-70	11.6	31	
35	Rapid prototyping issues in the 21st century. <i>Computers in Industry</i> , 1999 , 39, 3-10	11.6	77	
34	Development of a Stereolithography File Interface with ArtCAM\(\text{\textit{International Journal of Advanced Manufacturing Technology, 1999}\), 15, 119-126	3.2	1	•
33	Rapid prototyping versus virtual prototyping in product design and manufacturing. <i>International Journal of Advanced Manufacturing Technology</i> , 1999 , 15, 597-603	3.2	36	
32	Rapid tooling technology. Part 1. A comparative study. <i>International Journal of Advanced Manufacturing Technology</i> , 1999 , 15, 604-608	3.2	58	
31	Rapid tooling technology. Part 2. A case study using arc spray metal tooling. <i>International Journal of Advanced Manufacturing Technology</i> , 1999 , 15, 609-614	3.2	28	
30	Microblasting characteristics of jewellery models built using stereolithography apparatus (SLA). <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 450-458	3.2	2	
29	An integrated experimental approach to link a laser digitiser, a CAD/CAM system and a rapid prototyping system for biomedical applications. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 110-115	3.2	24	
28	A study of the state-of-the-art rapid prototyping technologies. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 146-152	3.2	88	
27	Checking for machinability on surface patches. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 806-814	3.2		
26	Abrasive jet deburring of jewellery models built by stereolithography apparatus (SLA). <i>Journal of Materials Processing Technology</i> , 1998 , 83, 36-47	5.3	39	
25	Integrating rapid prototyping and tooling with vacuum casting for connectors. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 617-623	3.2	27	
24	Rapid prototyping assisted surgery planning. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 624-630	3.2	45	
23	Creating machinable textures for CAD/CAM systems. <i>International Journal of Advanced Manufacturing Technology</i> , 1998 , 14, 269-279	3.2	4	
22	Parametric modelling of drinking bottles. <i>Journal of Manufacturing Technology Management</i> , 1998 , 9, 99-108		4	
21	Geometric analysis of parts from a 3-D solid model for manual assembly times. <i>Journal of Manufacturing Technology Management</i> , 1997 , 8, 137-146		5	

20	Rapid prototyping in Singapore: 1988 to 1997. Rapid Prototyping Journal, 1997, 3, 116-119	3.8	3
19	Computer Aided Decoration of Ceramic Tableware. Part I: 3-D decoration. <i>Computers and Graphics</i> , 1997 , 21, 641-653	1.8	4
18	Computer Aided Decoration of Ceramic Tableware. Part II: Rapid tooling. <i>Computers and Graphics</i> , 1997 , 21, 655-672	1.8	1
17	Interface between CAD and Rapid Prototyping systems. Part 1: A study of existing interfaces. <i>International Journal of Advanced Manufacturing Technology</i> , 1997 , 13, 566-570	3.2	59
16	Interface between CAD and Rapid Prototyping systems. Part 2: LMI [An improved interface. <i>International Journal of Advanced Manufacturing Technology</i> , 1997 , 13, 571-576	3.2	27
15	Rapid manufacturing of dinnerware 1997 , 310-319		
14	A study of stereolithography file errors and repair. Part 1. Generic solution. <i>International Journal of Advanced Manufacturing Technology</i> , 1996 , 12, 407-414	3.2	68
13	A study of stereolithography file errors and repair. Part 2. Special cases. <i>International Journal of Advanced Manufacturing Technology</i> , 1996 , 12, 415-422	3.2	44
12	Integrating Solid Freeform Manufacturing with Relief Creation Software. <i>IFIP Advances in Information and Communication Technology</i> , 1995 , 876-883	0.5	
11	Three-dimensional rapid prototyping technologies and key development areas. <i>Computing & Control Engineering Journal</i> , 1994 , 5, 200-206		62
10		11.6	12
	Control Engineering Journal, 1994 , 5, 200-206		
10	Control Engineering Journal, 1994 , 5, 200-206 A knowledge-based system for strip layout design. Computers in Industry, 1994 , 25, 31-44		12
10	A knowledge-based system for strip layout design. <i>Computers in Industry</i> , 1994 , 25, 31-44 A method of generating motifs aligned along a circular arc. <i>Computers and Graphics</i> , 1994 , 18, 353-362 A matrix approach to tolerance charting. <i>International Journal of Advanced Manufacturing</i>	1.8	12
10 9 8	A knowledge-based system for strip layout design. <i>Computers in Industry</i> , 1994 , 25, 31-44 A method of generating motifs aligned along a circular arc. <i>Computers and Graphics</i> , 1994 , 18, 353-362 A matrix approach to tolerance charting. <i>International Journal of Advanced Manufacturing Technology</i> , 1993 , 8, 175-181 Adapting decorative patterns for ceramic tableware. <i>Computing & Control Engineering Journal</i> , 1993	1.8	12 2 25
10 9 8 7	A knowledge-based system for strip layout design. Computers in Industry, 1994, 25, 31-44 A method of generating motifs aligned along a circular arc. Computers and Graphics, 1994, 18, 353-362 A matrix approach to tolerance charting. International Journal of Advanced Manufacturing Technology, 1993, 8, 175-181 Adapting decorative patterns for ceramic tableware. Computing & Control Engineering Journal, 1993, 4, 209 Development of a stereolithography preprocessor for model verification. Computing & Control	1.8	12 2 25 6
10 9 8 7 6	A knowledge-based system for strip layout design. Computers in Industry, 1994, 25, 31-44 A method of generating motifs aligned along a circular arc. Computers and Graphics, 1994, 18, 353-362 A matrix approach to tolerance charting. International Journal of Advanced Manufacturing Technology, 1993, 8, 175-181 Adapting decorative patterns for ceramic tableware. Computing & Control Engineering Journal, 1993, 4, 209 Development of a stereolithography preprocessor for model verification. Computing & Control Engineering Journal, 1993, 4, 218 Product design and improvement of a stop mount using a computer-aided engineering tool.	1.8	12 2 25 6

12

- 2 Scaffolds for Tissue Engineering
- Influence of erbium addition on the defects of selective laser-melted 7075 aluminium alloy. *Virtual and Physical Prototyping*,1-13

10.1