
Hiroyasu Onaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9353270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	NMR characterization of streptogramin B and Lâ€156,587, a nonâ€synergistic pair of the streptogramin family antibiotic complexes produced inductively by a combined culture of <scp><i>Streptomyces albogriseolus</i></scp> and <scp><i>Tsukamurella pulmonis</i></scp> . Magnetic Resonance in Chemistry, 2022, 60, 261-270.	1.9	3
2	Differential Biosynthesis and Roles of Two Ferrichrome-Type Siderophores, ASP2397/AS2488053 and Ferricrocin, in <i>Acremonium persicinum</i> . ACS Chemical Biology, 2022, 17, 207-216.	3.4	11
3	Kimidinomycin, a new antibiotic against Mycobacterium avium complex, produced by Streptomyces sp. KKTA-0263. Journal of Antibiotics, 2022, 75, 72-76.	2.0	1
4	Intimate relationships among actinomycetes and mycolic acid-containing bacteria. Scientific Reports, 2022, 12, 7222.	3.3	6
5	Accurate Models of Substrate Preferences of Post-Translational Modification Enzymes from a Combination of mRNA Display and Deep Learning. ACS Central Science, 2022, 8, 814-824.	11.3	11
6	Effects of carbon ion beam-induced mutagenesis for the screening of RED production-deficient mutants of Streptomyces coelicolor JCM4020. PLoS ONE, 2022, 17, e0270379.	2.5	6
7	Longicatenamides A–D, Two Diastereomeric Pairs of Cyclic Hexapeptides Produced by Combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Journal of Antibiotics, 2021, 74, 307-316.	2.0	12
8	Amycolapeptins A and B, Cyclic Nonadepsipeptides Produced by Combined-culture of <i>Amycolatopsis</i> sp. and <i>Tsukamurella pulmonis</i> . Journal of Organic Chemistry, 2021, 86, 1843-1849.	3.2	12
9	Phage tail-like nanostructures affect microbial interactions between Streptomyces and fungi. Scientific Reports, 2021, 11, 20116.	3.3	9
10	Promiscuous Enzymes Cooperate at the Substrate Level En Route to Lactazole A. Journal of the American Chemical Society, 2020, 142, 13886-13897.	13.7	23
11	Accurate Broadcasting of Substrate Fitness for Lactazole Biosynthetic Pathway from Reactivity-Profiling mRNA Display. Journal of the American Chemical Society, 2020, 142, 20329-20334.	13.7	13
12	Acyltransferase that catalyses the condensation of polyketide and peptide moieties of goadvionin hybrid lipopeptides. Nature Chemistry, 2020, 12, 869-877.	13.6	37
13	Bioactive properties of streptomyces may affect the dominance of Tricholoma matsutake in shiro. Symbiosis, 2020, 81, 1-13.	2.3	4
14	Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nature Communications, 2020, 11, 2272.	12.8	40
15	Metabolite Induction via Microorganism Symbiosis and Co-Culturing: A Potential Way to Enhance Chemical Diversity. , 2020, , 487-501.		0
16	Chemical Interactions of Cryptic Actinomycete Metabolite 5â€Alkylâ€1,2,3,4â€ŧetrahydroquinolines through Aggregate Formation. Angewandte Chemie - International Edition, 2019, 58, 13486-13491.	13.8	8
17	Chemical Interactions of Cryptic Actinomycete Metabolite 5â€Alkylâ€1,2,3,4â€ŧetrahydroquinolines through Aggregate Formation. Angewandte Chemie, 2019, 131, 13620-13625.	2.0	1
18	ldentification of the common biosynthetic gene cluster for both antimicrobial streptoaminals and antifungal 5-alkyl-1,2,3,4-tetrahydroquinolines. Organic and Biomolecular Chemistry, 2019, 17, 2370-2378.	2.8	17

#	Article	IF	CITATIONS
19	Enhancement of saccharothriolide production and discovery of a new metabolite, saccharothriolide C2, by combined-culture of Saccharothrix sp. and Tsukamurella pulmonis. Tetrahedron Letters, 2019, 60, 1072-1074.	1.4	10
20	Activation of silent biosynthetic pathways and discovery of novel secondary metabolites in actinomycetes by co-culture with mycolic acid-containing bacteria. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 363-374.	3.0	55
21	Umezawamides, new bioactive polycyclic tetramate macrolactams isolated from a combined-culture of Umezawaea sp. and mycolic acid-containing bacterium. Journal of Antibiotics, 2018, 71, 653-657.	2.0	26
22	Novel desferrioxamine derivatives synthesized using the secondary metabolism-specific nitrous acid biosynthetic pathway in Streptomyces davawensis. Journal of Antibiotics, 2018, 71, 911-919.	2.0	19
23	Catenulobactins A and B, Heterocyclic Peptides from Culturing <i>Catenuloplanes</i> sp. with a Mycolic Acid-Containing Bacterium. Journal of Natural Products, 2018, 81, 2106-2110.	3.0	26
24	Mirilactams C–E, Novel Polycyclic Macrolactams Isolated from Combined-Culture of <i>Actinosynnema mirum</i> NBRC 14064 and Mycolic Acid-Containing Bacterium. Chemical and Pharmaceutical Bulletin, 2018, 66, 660-667.	1.3	19
25	Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nature Communications, 2017, 8, 14207.	12.8	69
26	Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. Journal of Antibiotics, 2017, 70, 865-870.	2.0	96
27	Mycolic Acid Containing Bacterium Stimulates Tandem Cyclization of Polyene Macrolactam in a Lake Sediment Derived Rare Actinomycete. Organic Letters, 2017, 19, 4992-4995.	4.6	42
28	Effective Production of Aromatic Polyketides in <i>Streptomyces</i> using a Combined-Culture Method. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	2
29	Production of a Novel Amideâ€Containing Polyene by Activating a Cryptic Biosynthetic Gene Cluster in <i>Streptomyces</i> sp. MSC090213JE08. ChemBioChem, 2016, 17, 1464-1471.	2.6	38
30	Insights into the Biosynthesis of Dehydroalanines in Goadsporin. ChemBioChem, 2016, 17, 218-223.	2.6	47
31	Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]â€Spirohemiaminals from the Combinedâ€Culture of <i>Streptomyces nigrescens</i> and <i>Tsukamurella pulmonis</i> . Angewandte Chemie, 2016, 128, 10434-10438.	2.0	10
32	Discovery and Total Synthesis of Streptoaminals: Antimicrobial [5,5]â€Spirohemiaminals from the Combinedâ€Culture of <i>Streptomyces nigrescens</i> and <i>Tsukamurella pulmonis</i> . Angewandte Chemie - International Edition, 2016, 55, 10278-10282.	13.8	36
33	Mycolic acid-containing bacteria activate heterologous secondary metabolite expression in Streptomyces lividans. Journal of Antibiotics, 2015, 68, 594-597.	2.0	19
34	5-Alkyl-1,2,3,4-tetrahydroquinolines, New Membrane-Interacting Lipophilic Metabolites Produced by Combined Culture of <i>Streptomyces nigrescens</i> and <i>Tsukamurella pulmonis</i> . Organic Letters, 2015, 17, 1918-1921.	4.6	66
35	Chojalactones A–C, Cytotoxic Butanolides Isolated from <i>Streptomyces</i> sp. Cultivated with Mycolic Acid Containing Bacterium. Organic Letters, 2015, 17, 1501-1504.	4.6	57
36	Niizalactams A–C, Multicyclic Macrolactams Isolated from Combined Culture of <i>Streptomyces</i> with Mycolic Acid-Containing Bacterium. Journal of Natural Products, 2015, 78, 3011-3017.	3.0	62

#	Article	IF	CITATIONS
37	Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. Journal of Antibiotics, 2015, 68, 342-344.	2.0	52
38	Killing of Mycolic Acid-Containing Bacteria Aborted Induction of Antibiotic Production by Streptomyces in Combined-Culture. PLoS ONE, 2015, 10, e0142372.	2.5	25
39	Genome Mining Reveals a Minimum Gene Set for the Biosynthesis of 32-Membered Macrocyclic Thiopeptides Lactazoles. Chemistry and Biology, 2014, 21, 679-688.	6.0	56
40	Genetic approaches to generate hyper-producing strains of goadsporin: the relationships between productivity and gene duplication in secondary metabolite biosynthesis. Bioscience, Biotechnology and Biochemistry, 2014, 78, 394-399.	1.3	17
41	5-Prenyltryptophol, a new inhibitor of bone morphogenetic protein-induced alkaline phosphatase expression in myoblasts, produced by Streptomyces colinus subsp. albescens HEK608. Journal of Antibiotics, 2014, 67, 589-591.	2.0	9
42	ç"Ÿå•æ^éºä¼≜åe¦šé†'―å¤éf¨å°œį€ã«ã,^ã,‹æ–°è¦å©ç"¶ç‰©ç"Ÿç"£ã®æ′»æ€§åŒ–å±åŸ¹éŠæ³•ã,'ä¸å;fã«.	Kagaduuo To S	Seibutsu, 201
43	Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural Product Reports, 2013, 30, 108-160.	10.3	1,692
44	New structural scaffold 14-membered macrocyclic lactone ring for selective inhibitors of cell wall peptidoglycan biosynthesis in Staphylococcus aureus. Journal of Antibiotics, 2013, 66, 303-304.	2.0	17
45	Selective tryptophan determination using tryptophan oxidases involved in bis-indole antibiotic biosynthesis. Analytical Biochemistry, 2013, 438, 124-132.	2.4	25
46	Biosynthetic Origin of Alchivemycin A, a New Polyketide from <i>Streptomyces</i> and Absolute Configuration of Alchivemycin B. Organic Letters, 2013, 15, 3514-3517.	4.6	24
47	2P001 Crystal structure of a mutant flavoenzyme RebC and construction mechanism of indolocarbazole aglycone structure(01A. Protein: Structure,Poster). Seibutsu Butsuri, 2013, 53, S159.	0.1	0
48	Search Method for Inhibitors of Staphyloxanthin Production by Methicillin-Resistant Staphylococcus aureus. Biological and Pharmaceutical Bulletin, 2012, 35, 48-53.	1.4	36
49	Coupling Reaction of Indolepyruvic Acid by StaD and Its Product: Implications for Biosynthesis of Indolocarbazole and Violacein. ChemBioChem, 2012, 13, 2495-2500.	2.6	14
50	Mycolic Acid-Containing Bacteria Induce Natural-Product Biosynthesis in <i>Streptomyces</i> Species. Applied and Environmental Microbiology, 2011, 77, 400-406.	3.1	220
51	Characterization and Functional Modification of StaC and RebC, Which Are Involved in the Pyrrole Oxidation of Indolocarbazole Biosynthesis. Bioscience, Biotechnology and Biochemistry, 2011, 75, 2184-2193.	1.3	18
52	Title is missing!. Kagaku To Seibutsu, 2010, 48, 660-662.	0.0	0
53	Anti-invasive and anti-angiogenic activities of naturally occurring dibenzodiazepine BU-4664L and its derivatives. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 963-965.	2.2	27
54	Rakicidin D, an inhibitor of tumor cell invasion from marine-derived Streptomyces sp Journal of Antibiotics, 2010, 63, 563-565.	2.0	41

#	Article	IF	CITATIONS
55	A copper-containing oxidase catalyzes C-nitrosation in nitrosobenzamide biosynthesis. Nature Chemical Biology, 2010, 6, 641-643.	8.0	41
56	Alchivemycin A, a Bioactive Polycyclic Polyketide with an Unprecedented Skeleton from <i>Streptomyces</i> sp Organic Letters, 2010, 12, 3402-3405.	4.6	51
57	Biosynthesis of Indolocarbazole and Goadsporin, Two Different Heterocyclic Antibiotics Produced by Actinomycetes. Bioscience, Biotechnology and Biochemistry, 2009, 73, 2149-2155.	1.3	26
58	Synthesis and evaluation of myxochelin analogues as antimetastatic agents. Bioorganic and Medicinal Chemistry, 2009, 17, 2724-2732.	3.0	23
59	Theoretical and Experimental Studies of the Conversion of Chromopyrrolic Acid to an Antitumor Derivative by Cytochrome P450 StaP: The Catalytic Role of Water Molecules. Journal of the American Chemical Society, 2009, 131, 6748-6762.	13.7	64
60	Electron Transfer Activation of Chromopyrrolic Acid by Cytochrome P450 En Route to the Formation of an Antitumor Indolocarbazole Derivative: Theory Supports Experiment. Journal of the American Chemical Society, 2008, 130, 7170-7171.	13.7	49
61	pTONA5: A hyperexpression vector in streptomycetes. Protein Expression and Purification, 2008, 62, 244-248.	1.3	38
62	Crystal Structure of VioE, a Key Player in the Construction of the Molecular Skeleton of Violacein. Journal of Biological Chemistry, 2008, 283, 6459-6466.	3.4	38
63	Crystal structures and catalytic mechanism of cytochrome P450 StaP that produces the indolocarbazole skeleton. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11591-11596.	7.1	108
64	3P100 X-ray crystal structures of cytochrome P450 StaP which produces skeleton of an anticancer drug suggest unusual catalytic mechanism of P450(Hemeproteins,Poster Presentations). Seibutsu Butsuri, 2007, 47, S228.	0.1	0
65	Cloning of the Gene Cluster Responsible for Biosynthesis of KS-505a (Longestin), a Unique Tetraterpenoid. Bioscience, Biotechnology and Biochemistry, 2007, 71, 3072-3081.	1.3	21
66	VioE, a prodeoxyviolacein synthase involved in violacein biosynthesis, is responsible for intramolecular indole rearrangement. Tetrahedron Letters, 2007, 48, 2923-2926.	1.4	24
67	å⁻Œå±±æ¹¾æ·±å±æ°´ã•ã,‰ã®Enterococcus 属乳é…,èŒã®å^†é>¢ãëè«,æ€§çŠ¶ã®ææè¨Ž. Japanese Journal of La	ac t0c1 Acid I	Ba s teria, 200
68	Biosynthesis of Heterocyclic Antibiotics in Actinomycetes and an Approach to Synthesize the Natural Compounds. Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2006, 20, 62-71.	0.3	14
69	Absolute Configuration and Antitumor Activity of Myxochelin A Produced by Nonomuraea pusilla TP-A0861â€. Journal of Antibiotics, 2006, 59, 698-703.	2.0	45
70	Direct formation of chromopyrrolic acid from indole-3-pyruvic acid by StaD, a novel hemoprotein in indolocarbazole biosynthesis. Tetrahedron Letters, 2006, 47, 473-475.	1.4	38
71	Anicemycin, a New Inhibitor of Anchorage-independent Growth of Tumor Cells from Streptomyces sp. TP-A0648. Journal of Antibiotics, 2005, 58, 322-326.	2.0	15
72	Revision of the Structure Assigned to the Antibiotic BU-4664L from Micromonopora. Journal of Antibiotics, 2005, 58, 350-352.	2.0	26

#	Article	IF	CITATIONS
73	Absolute Configuration of TPU-0043, a Pentaene Macrolide from Streptomyces sp Journal of Antibiotics, 2005, 58, 523-525.	2.0	10
74	Cloning and characterization of the goadsporin biosynthetic gene cluster from Streptomyces sp. TP-A0584. Microbiology (United Kingdom), 2005, 151, 3923-3933.	1.8	86
75	Nocardimicins A, B, C, D, E, and F, Siderophores with Muscarinic M3 Receptor Inhibiting Activity fromNocardiasp. TP-A0674. Journal of Natural Products, 2005, 68, 1061-1065.	3.0	31
76	Cytochrome P450 Homolog Is Responsible for C–N Bond Formation between Aglycone and Deoxysugar in the Staurosporine Biosynthesis ofStreptomycessp. TP-A0274. Bioscience, Biotechnology and Biochemistry, 2005, 69, 1753-1759.	1.3	34
77	Identification of endophytic Streptomyces sp. R-5 and analysis of its antimicrobial metabolites. Journal of General Plant Pathology, 2004, 70, 66-68.	1.0	15
78	Multiplication of isolate R-5 of Streptomyces galbus on rhododendron leaves and its production of cell wall-degrading enzymes. Journal of General Plant Pathology, 2003, 69, 65-70.	1.0	22
79	Characterization of the Biosynthetic Gene Cluster of Rebeccamycin fromLechevalieria aerocolonigenesATCC 39243. Bioscience, Biotechnology and Biochemistry, 2003, 67, 127-138.	1.3	112
80	pTOYAMAcos, pTYM18, and pTYM19, Actinomycete-Escherichia coli Integrating Vectors for Heterologous Gene Expression. Journal of Antibiotics, 2003, 56, 950-956.	2.0	56
81	Cloning of the Staurosporine Biosynthetic Gene Cluster from Streptomyces sp. TP-A0274 and Its Heterologous Expression in Streptomyces lividans Journal of Antibiotics, 2002, 55, 1063-1071.	2.0	129
82	TPU-0037-A, B, C and D, Novel Lydicamycin Congeners with Anti-MRSA Activity from Streptomyces platensis TP-A0598 Journal of Antibiotics, 2002, 55, 873-880.	2.0	53
83	Involvement of two A-factor receptor homologues in Streptomyces coelicolor A3(2) in the regulation of secondary metabolism and morphogenesis. Molecular Microbiology, 2002, 28, 743-753.	2.5	91
84	Goadsporin, a Chemical Substance which Promotes Secondary Metabolism and Morphogenesis in Streptomycetes. I. Purification and Characterization Journal of Antibiotics, 2001, 54, 1036-1044.	2.0	90
85	Goadsporin, a Chemical Substance which Promotes Secondary Metabolism and Morphogenesis in Streptomycetes. II. Structure Determination Journal of Antibiotics, 2001, 54, 1045-1053.	2.0	53
86	Association of Induced Disease Resistance of Rhododendron Seedlings with Inoculation of Streptomyces sp. R-5 and Treatment with Actinomycin D and Amphotericin B to the Tissue-culture Medium Journal of Antibiotics, 2001, 54, 501-505.	2.0	33
87	Disease Resistance of Tissue-cultured Seedlings of Rhododendron after Treatment with Streptomyces sp. R-5. Journal of General Plant Pathology, 2001, 67, 325-332.	1.0	25
88	Fistupyrone, a Novel Inhibitor of the Infection of Chinese Cabbage by Alternaria brassicicola, from Streptomyces sp. TP-A0569 Journal of Antibiotics, 2000, 53, 1117-1122.	2.0	68
89	Studies on Endophytic Actinomycetes (I) Streptomyces sp. Isolated from Rhododendron and Its Antifungal Activity. Journal of General Plant Pathology, 2000, 66, 360-366.	1.0	121
90	Isolation of DNA Fragments Bound by Transcriptional Factors, AdpA and ArpA, in the A-Factor Regulatory Cascade Nihon Hosenkin Gakkai Shi = Actinomycetologica, 2000, 14, 37-42.	0.3	11

#	Article	IF	CITATIONS
91	The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Molecular Microbiology, 1999, 34, 102-111.	2.5	229
92	Site-directed mutagenesis of the A-factor receptor protein:. Gene, 1998, 222, 133-144.	2.2	39
93	DNAâ€binding activity of the Aâ€factor receptor protein and its recognition DNA sequences. Molecular Microbiology, 1997, 24, 991-1000.	2.5	82
94	Cloning and characterization of the A-factor receptor gene from Streptomyces griseus. Journal of Bacteriology, 1995, 177, 6083-6092.	2.2	134
95	Streptomyces Species as Boundary Microorganisms: Eucaryotic Regulatory Systems for Secondary Metabolism and Morphological Differentiation Nihon Hosenkin Gakkai Shi = Actinomycetologica, 1995, 9, 244-253.	0.3	1
96	Organization and nucleotide sequence of the secE-nusG region of Streptomyces griseus. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1994, 1217, 93-96.	2.4	13