
Fabio Stoch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9352870/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speciation of a subterranean amphipod on the glacier margins in South Eastern Alps, Europe. Journal of Biogeography, 2022, 49, 38-50.	3.0	9
2	The Ecology of Aquatic Cave Environments. , 2022, , .		1
3	Brazilian cave heritage under siege. Science, 2022, 375, 1238-1239.	12.6	32
4	Diversity and Distribution of the Inland Water Decapods of Sicily (Crustacea, Malacostraca). Diversity, 2022, 14, 246.	1.7	4
5	New distributional data for the Mediterranean medicinal leech Hirudo verbana Carena, 1820 (Hirudinea, Hirudinidae) in Italy, with a note on its feeding on amphibians. Biogeographia, 2021, 36, .	0.5	0

6 Stygobitic crustaceans in an anchialine cave with an archeological heritage at Vodeni Rat (Island of) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

7	An updated checklist and biogeography of the Sardinian large branchiopods, with a focus on Spinicaudata (Crustacea, Branchiopoda). Biogeographia, 2021, 36, .	0.5	0
8	Peninsular effect on species richness in Italian small mammals and bats. Mammalia, 2021, 85, 248-255.	0.7	2
9	The groundwater fauna of the Classical Karst: hydrogeological indicators and descriptors. Aquatic Ecology, 2020, 54, 205-224.	1.5	10
10	Molecular taxonomy, phylogeny and biogeography of the Niphargus tatrensis species complex (Amphipoda, Niphargidae) in Austria. Organisms Diversity and Evolution, 2020, 20, 701-722.	1.6	9
11	An annotated checklist of the Niphargidae (Crustacea: Amphipoda) of Greece. Zootaxa, 2020, 4772, zootaxa.4772.3.5.	0.5	1
12	How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. Journal of Biogeography, 2020, 47, 1875-1887.	3.0	18
13	The Racovitzan impediment and the hidden biodiversity of unexplored environments. Conservation Biology, 2019, 33, 214-216.	4.7	89
14	ClimCKmap, a spatially, temporally and climatically explicit distribution database for the Italian fauna. Scientific Data, 2019, 6, 195.	5.3	1
15	On the non-malacostracan crustaceans (Crustacea: Branchiopoda, Copepoda, Ostracoda) from the inland waters of Fthiotida (Greece). Biogeographia, 2019, 34, .	0.5	2
16	An account on the non-malacostracan crustacean fauna from the inland waters of Crete, Greece, with the synonymization of Arctodiaptomus piliger Brehm, 1955 with Arctodiaptomus alpinus (Imhof,) Tj ETQq0	0 0 rgBT	/Overslock !

17	Macroecological and spatial patterns in the distribution of cladocerans in Alpine lakes. , 2019, 38, 119-136.		5
18	Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography, 2018, 41, 424-436.	4.5	72

3

#	Article	IF	CITATIONS
19	Diversity patterns and biogeography of Diaptomidae (Copepoda, Calanoida) in the Western Palearctic. Hydrobiologia, 2017, 800, 45-60.	2.0	25

 $_{20}$ Updated checklist and distribution of large branchiopods (Branchiopoda: Anostraca, Notostraca,) Tj ETQq0 0 0 rgBT $_{12}^{O}$ Verlock 10 Tf 50 $_{14}^{O}$

21	A comparison of Cladocera and Copepoda as indicators of hydroperiod length in Mediterranean ponds. Hydrobiologia, 2016, 782, 71-80.	2.0	7
22	The role of spatial environmental factors as determinants of large branchiopod distribution in Tunisian temporary ponds. Hydrobiologia, 2016, 782, 37-51.	2.0	25
23	Long-term monitoring of astatic water bodies: microcrustaceans as indicators of hydroperiod length in ponds and pools. Rendiconti Lincei, 2015, 26, 345-352.	2.2	6
24	Multiâ€causality and spatial nonâ€stationarity in the determinants of groundwater crustacean diversity in Europe. Ecography, 2015, 38, 531-540.	4.5	44
25	PESI - a taxonomic backbone for Europe. Biodiversity Data Journal, 2015, 3, e5848.	0.8	28
26	The dark side of springs: what drives small-scale spatial patterns of subsurface meiofaunal assemblages?. Journal of Limnology, 2014, 73, .	1.1	30
27	The water mites (Acari: Hydrachnidia) of the standing waters of Corsica, Sardinia and Sicily: review and new data. Italian Journal of Zoology, 2014, 81, 389-408.	0.6	9
28	Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): implication for flow regime, contaminant fate and invertebrate response. Environmental Earth Sciences, 2014, 71, 1791-1807.	2.7	41
29	Geographic variation in range size and beta diversity of groundwater crustaceans: insights from habitats with low thermal seasonality. Global Ecology and Biogeography, 2014, 23, 1135-1145.	5.8	123
30	A New Threat to Groundwater Ecosystems: First Occurrences of the Invasive Crayfish Procambarus clarkii (Girard, 1852) in European Caves. Journal of Cave and Karst Studies, 2014, 76, 62-65.	0.6	19
31	Incorporating the hyporheic zone within the river discontinuum: Longitudinal patterns of subsurface copepod assemblages in an Alpine stream. Limnologica, 2013, 43, 288-296.	1.5	29
32	Dissecting copepod diversity at different spatial scales in southern European groundwater. Journal of Natural History, 2013, 47, 821-840.	0.5	6
33	Mesocyclops (Crustacea, Copepoda, Cyclopidae) in the South Pacific islands. Zoologischer Anzeiger, 2012, 251, 237-252.	0.9	8
34	Exploring species distribution of spring meiofauna (Annelida, Acari, Crustacea) in the south-eastern Alps. Journal of Limnology, 2011, 70, 65.	1.1	34
35	Stygobiotic crustacean species richness: a question of numbers, a matter of scale. Hydrobiologia, 2010, 653, 217-234.	2.0	86

36 Stygobiotic crustacean species richness: a question of numbers, a matter of scale. , 2010, , 217-234.

FABIO STOCH

#	Article	IF	CITATIONS
37	Distribution and ecology of non-marine ostracods (Crustacea, Ostracoda) from Friuli Venezia Giulia (NE Italy). Journal of Limnology, 2009, 68, 1.	1.1	40
38	Groundwater biodiversity in Europe. Freshwater Biology, 2009, 54, 709-726.	2.4	131
39	Diversity patterns of stygobiotic crustaceans across multiple spatial scales in Europe. Freshwater Biology, 2009, 54, 756-776.	2.4	93
40	Biodiversity indicators in European ground waters: towards a predictive model of stygobiotic species richness. Freshwater Biology, 2009, 54, 745-755.	2.4	51
41	Groundwater biodiversity patterns in the Lessinian Massif of northern Italy. Freshwater Biology, 2009, 54, 830-847.	2.4	70
42	Losing the Bounty? Investigating Species Richness in Isolated Freshwater Ecosystems of Oceania. Pacific Science, 2009, 63, 153-179.	0.6	38
43	Distribution of four narrowly endemic Niphargus species (Crustacea: Amphipoda) in the western Dinaric region with description of a new species. Zoologischer Anzeiger, 2006, 245, 77-94.	0.9	29
44	Microcharon novariensis, a new microparasellid isopod from groundwater in Italy (Crustacea,) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 462
45	Two Chydoridae species (Crustacea, Cladocera) new to Italy: Alona rustica and Camptocercus uncinatus. Italian Journal of Zoology, 2002, 69, 59-63.	0.6	5
46	Distribution and ecology of copepods in mountainous regions of the Eastern Alps. Hydrobiologia, 2001, 453/454, 309-324.	2.0	40
47	Title is missing!. Hydrobiologia, 2001, 453/454, 525-531.	2.0	16
48	Distribution and ecology of copepods in mountainous regions of the Eastern Alps. , 2001, , 309-324.		6
49	How many species of Diacyclops? New taxonomic characters and species richness in a freshwater cyclopid genus (Copepoda, Cyclopoida). , 2001, , 525-531.		6
50	REDESCRIPTION OF DIACYCLOPS DISJUNCTUS (THALLWITZ, 1927) FROM AUSTRIA, WITH REMARKS ON THE DIACYCLOPS LANGUIDUS-GROUP IN EUROPE (COPEPODA, CYCLOPOIDA, CYCLOPIDAE). Crustaceana, 2000, 73, 469-478.	0.3	7
51	The Diacyclops languidoides - group (Copepoda : Cyclopoida) in Austria, with redescription of Diacyclops cohabitatus Monchenko 1980. Annales De Limnologie, 2000, 36, 21-29.	0.6	9
52	Title is missing!. , 1999, 412, 165-176.		12
53	Rediscovery and Redescription of Austriocyclops Vindobonae Kiefer, 1964 (Copepoda, Cyclopoida) With Remarks On the Subfamily Eucyclopinae Kiefer. Crustaceana, 1997, 70, 901-910.	0.3	10
54	Metacrangonyx ilvanusn. sp., the first Italian representative of the family Metacrangonyctidae (Crustacea : Amphipoda). Annales De Limnologie, 1997, 33, 255-262.	0.6	2

Fabio Stoch

#	Article	IF	CITATIONS
55	Title is missing!. Hydrobiologia, 1997, 350, 49-61.	2.0	10
56	Taxonomic and biogeographic analysis of the Proasellus coxalis-group (crustacea, isopoda, asellidae) in Sicily, with description of Proasellus montalentii n. sp Hydrobiologia, 1996, 317, 247-258.	2.0	6
57	Exploring copepod distribution patterns at three nested spatial scales in a spring system: habitat partitioning and potential for hydrological bioindication. Journal of Limnology, 0, , .	1.1	10
58	An annotated checklist and bibliography of the Diaptomidae (Copepoda, Calanoida) of Italy, Corsica, and the Maltese islands. Journal of Limnology, 0, , .	1.1	4
59	Rediscovery and redescription of Niphargus enslini Karaman, 1932 (Amphipoda, Niphargidae) in southern Germany. Subterranean Biology, 0, 40, 65-89.	5.0	2
60	The genus Microniphargus (Crustacea, Amphipoda): evidence for three lineages distributed across northwestern Europe and transfer from Niphargidae to Pseudoniphargidae. Belgian Journal of Zoology, 0, 151, .	0.5	3
61	Current cave monitoring practices, their variation and recommendations for future improvement in Europe: A synopsis from the 6th EuroSpeleo Protection Symposium. Research Ideas and Outcomes, 0, 8,	1.0	3
62	A reassessment of the origin and distribution of the subterranean genus Pseudolimnocythere Klie, 1938 (Ostracoda, Loxoconchidae), with description of two new species from Italy. Subterranean Biology, 0, 43, 33-60.	5.0	1
63	Overcoming shortfalls and impediments in subterranean biology: a challenge for the future. ARPHA Conference Abstracts, 0, 5, .	0.0	Ο
64	Insights into the Eucyclops graeteri species complex (Copepoda, Cyclopidae) — the case of sulphidic groundwaters of Mangalia (Southern Dobrogea, Romania). ARPHA Conference Abstracts, 0, 5, .	0.0	0
65	Molecular phylogeny of Alpine groundwater Niphargidae (Crustacea, Amphipoda) reveals the effects of Quaternary climate fluctuations. ARPHA Conference Abstracts, 0, 5, .	0.0	Ο
66	Phylogenetic diversity of water scorpions (Nepa spp., Insecta, Hemiptera). ARPHA Conference Abstracts, 0, 5, .	0.0	0