
Hung-Ying Kao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9352704/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Tumor Suppressor TGFBR3 Blocks Lymph Node Metastasis in Head and Neck Cancer. Cancers, 2020, 12, 1375.	3.7	12
2	The promyelocytic leukemia protein isoform PML1 is an oncoprotein and a direct target of the antioxidant sulforaphane (SFN). Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118707.	4.1	9
3	Cancerâ€associated fibroblastâ€derived interleukinâ€1β activates protumor Câ€C motif chemokine ligand 22 signaling in head and neck cancer. Cancer Science, 2019, 110, 2783-2793.	3.9	47
4	The p53-S100A2 Positive Feedback Loop Negatively Regulates Epithelialization in Cutaneous Wound Healing. Scientific Reports, 2018, 8, 5458.	3.3	29
5	ACTN4 regulates the stability of RIPK1 in melanoma. Oncogene, 2018, 37, 4033-4045.	5.9	20
6	PML: Regulation and multifaceted function beyond tumor suppression. Cell and Bioscience, 2018, 8, 5.	4.8	74
7	The Role of Glucocorticoid Receptors in Podocytes and Nephrotic Syndrome. Nuclear Receptor Research, 2018, 5, .	2.5	12
8	Multidomain architecture of estrogen receptor reveals interfacial cross-talk between its DNA-binding and ligand-binding domains. Nature Communications, 2018, 9, 3520.	12.8	38
9	Dual regulation of Stat1 and Stat3 by the tumor suppressor protein PML contributes to interferon α-mediated inhibition of angiogenesis. Journal of Biological Chemistry, 2017, 292, 10048-10060.	3.4	27
10	α Actinin 4 (ACTN4) Regulates Glucocorticoid Receptor-mediated Transactivation and Transrepression in Podocytes. Journal of Biological Chemistry, 2017, 292, 1637-1647.	3.4	32
11	A Signaling Network Controlling Androgenic Repression of c-Fos Protein in Prostate Adenocarcinoma Cells. Journal of Biological Chemistry, 2016, 291, 5512-5526.	3.4	20
12	The function, regulation and therapeutic implications of the tumor suppressor protein, PML. Cell and Bioscience, 2015, 5, 60.	4.8	68
13	The actinin family proteins: biological function and clinical implications. Cell and Bioscience, 2015, 5, 48.	4.8	7
14	α-Actinin 4 Potentiates Nuclear Factor κ-Light-chain-enhancer of Activated B-cell (NF-κB) Activity in Podocytes Independent of Its Cytoplasmic Actin Binding Function. Journal of Biological Chemistry, 2015, 290, 338-349.	3.4	37
15	Novel Vitamin D Receptor Mutations in Hereditary Vitamin D Resistant Rickets in Chinese. PLoS ONE, 2015, 10, e0138152.	2.5	8
16	Control of antioxidative response by the tumor suppressor protein PML through regulating Nrf2 activity. Molecular Biology of the Cell, 2014, 25, 2485-2498.	2.1	28
17	Ablation of Promyelocytic Leukemia Protein (PML) Re-patterns Energy Balance and Protects Mice from Obesity Induced by a Western Diet. Journal of Biological Chemistry, 2013, 288, 29746-29759.	3.4	30
18	β-Transducin Repeat-containing Protein 1 (β-TrCP1)-mediated Silencing Mediator of Retinoic Acid and Thyroid Hormone Receptor (SMRT) Protein Degradation Promotes Tumor Necrosis Factor α (TNFα)-induced Inflammatory Gene Expression. Journal of Biological Chemistry, 2013, 288, 25375-25386.	3.4	6

Hung-Ying Kao

#	Article	IF	CITATIONS
19	The role of PML in oxidative stress responses. FASEB Journal, 2013, 27, 834.8.	0.5	0
20	Identification of a Novel LXXLL Motif in α-Actinin 4-spliced Isoform That Is Critical for Its Interaction with Estrogen Receptor α and Co-activators. Journal of Biological Chemistry, 2012, 287, 35418-35429.	3.4	25
21	Promyelocytic Leukemia Protein (PML) Regulates Endothelial Cell Network Formation and Migration in Response to Tumor Necrosis Factor α (TNFα) and Interferon α (IFNα). Journal of Biological Chemistry, 2012, 287, 23356-23367.	3.4	32
22	Microarray analysis revealing common and distinct functions of promyelocytic leukemia protein (PML) and tumor necrosis factor alpha (TNFα) signaling in endothelial cells. BMC Genomics, 2012, 13, 453.	2.8	19
23	Post-translational modifications of PML: consequences and implications. Frontiers in Oncology, 2012, 2, 210.	2.8	43
24	Mitogen-activated Protein Kinase Extracellular Signal-regulated Kinase 2 Phosphorylates and Promotes Pin1 Protein-dependent Promyelocytic Leukemia Protein Turnover. Journal of Biological Chemistry, 2011, 286, 44403-44411.	3.4	34
25	Promyelocytic Leukemia Protein Controls Cell Migration in Response to Hydrogen Peroxide and Insulin-like Growth Factor-1. Journal of Biological Chemistry, 2010, 285, 9485-9492.	3.4	34
26	G Protein Pathway Suppressor 2 (GPS2) Is a Transcriptional Corepressor Important for Estrogen Receptor α-mediated Transcriptional Regulation. Journal of Biological Chemistry, 2009, 284, 36395-36404.	3.4	43
27	Histone Deacetylase 7 Promotes PML Sumoylation and Is Essential for PML Nuclear Body Formation. Molecular and Cellular Biology, 2008, 28, 5658-5667.	2.3	66
28	Signal-dependent Regulation of Transcription by Histone Deacetylase 7 Involves Recruitment to Promyelocytic Leukemia Protein Nuclear Bodies. Molecular Biology of the Cell, 2008, 19, 3020-3027.	2.1	35
29	Degradation of the Tumor Suppressor PML by Pin1 Contributes to the Cancer Phenotype of Breast Cancer MDA-MB-231 Cells. Molecular and Cellular Biology, 2008, 28, 997-1006.	2.3	82
30	Concerted Regulation of the Corepressor SMRT by Cdk2 and Pin1. FASEB Journal, 2008, 22, 646.1.	0.5	0
31	Aberrant Association of Promyelocytic Leukemia Protein-Retinoic Acid Receptor-α with Coactivators Contributes to Its Ability to Regulate Gene Expression. Journal of Biological Chemistry, 2007, 282, 18584-18596.	3.4	10
32	Isolation and Characterization of Ret Finger Protein. FASEB Journal, 2007, 21, A287.	0.5	0
33	Co-repressor Release but Not Ligand Binding Is a Prerequisite for Transcription Activation by Human Retinoid Acid Receptor α Ligand-binding Domain. Journal of Biological Chemistry, 2003, 278, 7366-7373.	3.4	12
34	Isolation and Characterization of Mammalian HDAC10, a Novel Histone Deacetylase. Journal of Biological Chemistry, 2002, 277, 187-193.	3.4	153
35	Histone deacetylase complexes: functional entities or molecular reservoirs. FEBS Letters, 2001, 494, 141-144.	2.8	31