
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9352467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr _{0.1} Ce _{0.7} Y _{0.2–} <i> _x </i> Yb <i> _x </i> O _{3–Î} . Science, 2009, 326, 126-129.	12.6	954
2	Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells. Nature Communications, 2011, 2, 357.	12.8	280
3	Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform. Energy and Environmental Science, 2011, 4, 2249.	30.8	176
4	La0.6Sr0.4Co0.2Fe0.8O3â~δ cathodes infiltrated with samarium-doped cerium oxide for solid oxide fuel cells. Journal of Power Sources, 2010, 195, 4704-4708.	7.8	173
5	Enhanced performance of LSCF cathode through surface modification. International Journal of Hydrogen Energy, 2012, 37, 8613-8620.	7.1	161
6	Efficient Electro atalysts for Enhancing Surface Activity and Stability of SOFC Cathodes. Advanced Energy Materials, 2013, 3, 1149-1154.	19.5	144
7	Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 2013, 237, 243-259.	7.8	140
8	Chemically Stable Yttrium and Tin Coâ€Doped Barium Zirconate Electrolyte for Next Generation High Performance Protonâ€Conducting Solid Oxide Fuel Cells. Advanced Energy Materials, 2013, 3, 1041-1050.	19.5	140
9	Direct octane fuel cells: A promising power for transportation. Nano Energy, 2012, 1, 448-455.	16.0	118
10	Direct liquid methanol-fueled solid oxide fuel cell. Journal of Power Sources, 2008, 185, 188-192.	7.8	115
11	Raman spectroscopic monitoring of carbon deposition on hydrocarbon-fed solid oxide fuel cell anodes. Energy and Environmental Science, 2012, 5, 7913.	30.8	105
12	An Easily Sintered, Chemically Stable, Barium Zirconateâ€Based Proton Conductor for Highâ€Performance Proton onducting Solid Oxide Fuel Cells. Advanced Functional Materials, 2014, 24, 5695-5702.	14.9	81
13	Novel nano-network cathodes for solid oxide fuel cells. Journal of Power Sources, 2008, 185, 13-18.	7.8	80
14	An Efficient SOFC Based on Samaria-Doped Ceria (SDC) Electrolyte. Journal of the Electrochemical Society, 2012, 159, B661-B665.	2.9	76
15	Enhanced sinterability of BaZr0.1Ce0.7Y0.1Yb0.1O3â^'δ by addition of nickel oxide. Journal of Power Sources, 2011, 196, 9980-9984.	7.8	73
16	A more efficient anode microstructure for SOFCs based on proton conductors. International Journal of Hydrogen Energy, 2012, 37, 18342-18348.	7.1	61
17	LSM-infiltrated LSCF cathodes for solid oxide fuel cells. Journal of Energy Chemistry, 2013, 22, 555-559.	12.9	59
18	YSZ-based SOFC with modified electrode/electrolyte interfaces for operating at temperature lower than 650°C. Journal of Power Sources, 2008, 180, 215-220.	7.8	58

#	Article	IF	CITATIONS
19	High-performance cathode-supported SOFCs prepared by a single-step co-firing process. Journal of Power Sources, 2008, 182, 585-588.	7.8	55
20	In Situ Probing of the Mechanisms of Coking Resistance on Catalyst-Modified Anodes for Solid Oxide Fuel Cells. Chemistry of Materials, 2015, 27, 822-828.	6.7	54
21	High performance of anode supported BaZr0.1Ce0.7Y0.2O3â^δ(BZCY) electrolyte cell for IT-SOFC. International Journal of Hydrogen Energy, 2011, 36, 13741-13745.	7.1	52
22	Anode-supported micro-tubular SOFCs fabricated by a phase-inversion and dip-coating process. International Journal of Hydrogen Energy, 2011, 36, 5604-5610.	7.1	50
23	High-performance Ni–BaZr0.1Ce0.7Y0.1Yb0.1O3â~î^ (BZCYYb) membranes for hydrogen separation. International Journal of Hydrogen Energy, 2013, 38, 14743-14749.	7.1	48
24	High-performance, ceria-based solid oxide fuel cells fabricated at low temperatures. Journal of Power Sources, 2013, 241, 454-459.	7.8	41
25	Anode-supported tubular SOFCs based on BaZr0.1Ce0.7Y0.1Yb0.1O3â^î´ electrolyte fabricated by dip coating. Electrochemistry Communications, 2011, 13, 615-618.	4.7	39
26	Application of surface enhanced Raman spectroscopy to the study of SOFC electrode surfaces. Physical Chemistry Chemical Physics, 2012, 14, 5919.	2.8	38
27	Fabrication and characterization of functionally-graded LSCF cathodes by tape casting. International Journal of Hydrogen Energy, 2013, 38, 1082-1087.	7.1	37
28	Effect of impregnation of Sm-doped CeO2 in NiO/YSZ anode substrate prepared by gelcasting for tubular solid oxide fuel cell. Journal of Alloys and Compounds, 2009, 482, 168-172.	5.5	36
29	A mixed-conducting BaPr0.8In0.2O3â^îŕ cathode for proton-conducting solid oxide fuel cells. Electrochemistry Communications, 2013, 27, 19-21.	4.7	36
30	An operando surface enhanced Raman spectroscopy (SERS) study of carbon deposition on SOFC anodes. Physical Chemistry Chemical Physics, 2015, 17, 21112-21119.	2.8	34
31	Three-Dimensional Microstructural Imaging of Sulfur Poisoning-Induced Degradation in a Ni-YSZ Anode of Solid Oxide Fuel Cells. Scientific Reports, 2014, 4, 5246.	3.3	33
32	Multilayer tape casting of large-scale anode-supported thin-film electrolyte solid oxide fuel cells. International Journal of Hydrogen Energy, 2019, 44, 16976-16982.	7.1	32
33	Thin yttria-stabilized zirconia electrolyte and transition layers fabricated by particle suspension spray. Journal of Power Sources, 2007, 164, 567-571.	7.8	31
34	Fabrication and characterization of Y2O3 stabilized ZrO2 films deposited with aerosol-assisted MOCVD. Solid State Ionics, 2007, 177, 3405-3410.	2.7	30
35	SrCo0.9Sb0.1O3â^'δ cubic perovskite as a novel cathode for intermediate-to-low temperature solid oxide fuel cells. Journal of Alloys and Compounds, 2009, 472, 556-558.	5.5	30
36	Operando and Inâ€situ Xâ€ray Spectroscopies of Degradation in La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3â^'<i>δ</i>} Thin Film Cathodes in Fuel Cells. ChemSusChem, 2014, 7, 3078-3087.	6.8	30

#	Article	IF	CITATIONS
37	Preparation and Characterization of (<scp>La_{0.8}Sr_{0.2})_{0.95}MnO_{3â^{^1}î}</scp> (<scp>LSM</scp>) Thin Films and <scp>LSM/LSCF</scp> Interface for Solid Oxide Fuel Cells. Journal of the American Ceramic Society, 2011, 94, 3340-3345.	3.8	29
38	Enhancing Sulfur Tolerance of a Ni-YSZ Anode through BaZr _{0.1} Ce _{0.7} Y _{0.1} Yb _{0.1} O _{3â^'<i>δ</i>} Infiltration Journal of the Electrochemical Society, 2014, 161, F668-F673.	.2.9	29
39	Electrochemical properties of micro-tubular intermediate temperature solid oxide fuel cell with novel asymmetric structure based on BaZr0.1Ce0.7Y0.1Yb0.1O3∴δ proton conducting electrolyte. International Journal of Hydrogen Energy, 2019, 44, 16887-16897.	7.1	29
40	Impedance Spectroscopy Study of an SDC-based SOFC with High Open Circuit Voltage. Electrochimica Acta, 2015, 177, 227-236.	5.2	27
41	Decomposition Behavior of M(DPM)n (DPM = 2,2,6,6-Tetramethyl-3,5-heptanedionato; n = 2, 3, 4). Journal of Physical Chemistry A, 2006, 110, 13479-13486.	2.5	26
42	Comparative study on the performance of tubular and button cells with YSZ membrane fabricated by a refined particle suspension coating technique. International Journal of Hydrogen Energy, 2010, 35, 10489-10494.	7.1	23
43	Improvement of the performances of tubular solid oxide fuel cells by optimizing co-sintering temperature of the NiO/YSZ anode-YSZ electrolyte double layers. Journal of Power Sources, 2007, 171, 495-498.	7.8	22
44	Electrical and electrocatalytic properties of a La0.8Sr0.2Co0.17Mn0.83O3â^îr´ cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources, 2012, 205, 80-85.	7.8	22
45	Synthesis and electrochemical properties of (Pr–Nd)1â^'ySryMnO3â^'Î′ and (Pr1â^'xNdx)0.7Sr0.3MnO3â^'Î′ as cathode materials for IT-SOFC. Journal of Power Sources, 2008, 176, 107-111.	7.8	19
46	Influence of Cr deficiency on sintering character and properties of SOFC interconnect material La0.7Ca0.3Cr1â^`xO3â~`l´. Materials Research Bulletin, 2008, 43, 2607-2616.	5.2	19
47	High sintering ability and electrical conductivity of Zn doped La(Ca)CrO3 based interconnect ceramics for SOFCs. Journal of Power Sources, 2008, 177, 451-456.	7.8	18
48	Solid Oxide Fuel Cells. , 2012, , 7-36.		18
49	Enhanced Performance of La _{0.6} Sr _{0.4} Co _{0.2} Fe _{0.8} O _{3-delta} (LSCF) Cathodes with Graded Microstructure Fabricated by Tape Casting. Journal of Electrochemical Science and Technology, 2010, 1, 50-56.	2.2	18
50	High performance of anode supported BaZr0.1Ce0.7Y0.1Yb0.1O3-δ proton-conducting electrolyte micro-tubular cells with asymmetric structure for IT-SOFCs. Journal of Electroanalytical Chemistry, 2019, 844, 49-57.	3.8	17
51	Synthesis of LaCrO3 films using spray pyrolysis technique. Materials Letters, 2007, 61, 1908-1911.	2.6	16
52	Improvement of cathode–electrolyte interfaces of tubular solid oxide fuel cells by fabricating dense YSZ electrolyte membranes with indented surfaces. Journal of Power Sources, 2008, 175, 201-205.	7.8	15
53	Understanding the Impact of Sulfur Poisoning on the Methane-Reforming Activity of a Solid Oxide Fuel Cell Anode. ACS Catalysis, 2021, 11, 13556-13566.	11.2	15
54	Comparative study on the performance of tubular solid oxide fuel cells with various Pr0.35Nd0.35Sr0.3MnO3/YSZ cathode layers made by different processes. Journal of Power Sources, 2008, 175, 272-275.	7.8	14

#	Article	IF	CITATIONS
55	Highly active Sm0.2Ce0.8O1.9 powders of very low apparent density derived from mixed cerium sources. Journal of Power Sources, 2013, 229, 277-284.	7.8	14
56	Electrostatic Force Microscopic Characterization of Early Stage Carbon Deposition on Nickel Anodes in Solid Oxide Fuel Cells. Nano Letters, 2015, 15, 6047-6050.	9.1	10
57	Preparation of Pr0.35Nd0.35Sr0.3MnO3â^'î/YSZ composite cathode powders for tubular solid oxide fuel cells by microwave-induced monomer gelation and gel combustion synthesis process. Journal of Power Sources, 2008, 175, 436-440.	7.8	9
58	Synthesis and thermal properties of polystyrene/montmorillonite nanocomposites by ?-ray radiation polymerization. Journal of Applied Polymer Science, 2003, 90, 1692-1696.	2.6	7
59	Understanding the phase formation and compositions of barium carbonate modified NiO-yttria stabilized zirconia for fuel cell applications. International Journal of Hydrogen Energy, 2015, 40, 15597-15604.	7.1	7
60	Hydrogen oxidation at the Pt–BaZr0.1Ce0.7Y0.1Yb0.1O3â^îr (BZCYYb) interface. Physical Chemistry Chemical Physics, 2013, 15, 3820.	2.8	6
61	A highâ€performance solid oxide fuel cell with a layered electrolyte for reduced temperatures. Journal of the American Ceramic Society, 2020, 103, 5325-5336.	3.8	6
62	Microarchitectured solid oxide fuel cells with improved energy efficiency (Part II): Fabrication and characterization. Journal of Power Sources, 2015, 293, 883-891.	7.8	4
63	SrCo0.9Sb0.1O3–δ cubic perovskite as a novel cathode for intermediate-to-low temperature SOFCs. Fuel Cells Bulletin, 2009, 2009, 12-15.	0.1	3
64	Probing and Mapping Electrode Surfaces in Solid Oxide Fuel Cells. Journal of Visualized Experiments, 2012, , e50161.	0.3	2
65	Enhanced density of sol–gel derived La0.8S0.2MnO3 thin film with an electric field assisted deposition. Materials Letters, 2013, 92, 192-194.	2.6	2