
Alexander Bauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/935237/publications.pdf Version: 2024-02-01

ALEVANDED RALLED

#	Article	IF	CITATIONS
1	Spectral-Based Classification of Plant Species Groups and Functional Plant Parts in Managed Permanent Grassland. Remote Sensing, 2022, 14, 1154.	4.0	5
2	Hyperspectral-Based Classification of Managed Permanent Grassland with Multilayer Perceptrons: Influence of Spectral Band Count and Spectral Regions on Model Performance. Agriculture (Switzerland), 2022, 12, 579.	3.1	0
3	Environmental life cycle assessment of nano-cellulose and biogas production from manure. Journal of Environmental Management, 2022, 314, 115093.	7.8	12
4	Comparison of a system expansion and allocation approach for the handling of multi-output processes in life cycle assessment – a case study for nano-cellulose and biogas production from elephant manure. Bodenkultur, 2022, 72, 113-121.	0.2	0
5	Excellence in Excrements: Upcycling of Herbivore Manure into Nanocellulose and Biogas. ACS Sustainable Chemistry and Engineering, 2021, 9, 15506-15513.	6.7	12
6	Life Cycle Assessment of Biogas Production from Unused Grassland Biomass Pretreated by Steam Explosion Using a System Expansion Method. Sustainability, 2020, 12, 9945.	3.2	5
7	Food wastes from hospitality sector as versatile bioresources for bio-products: an overview. Journal of Material Cycles and Waste Management, 2020, 22, 955-964.	3.0	4
8	Utilization of Food and Agricultural Residues for a Flexible Biogas Production: Process Stability and Effects on Needed Biogas Storage Capacities. Energies, 2019, 12, 2678.	3.1	11
9	Influence of tillage depth of a cultivator on the incorporation of crop residues of winter barley in a chernozem soil. Bodenkultur, 2019, 70, 69-79.	0.2	6
10	Multicriteria Decision Model and Thermal Pretreatment of Hotel Food Waste for Robust Output to Biogas: Case Study from City of Jaipur, India. BioMed Research International, 2018, 2018, 1-13.	1.9	15
11	Corn stover for biogas production: Effect of steam explosion pretreatment on the gas yields and on the biodegradation kinetics of the primary structural compounds. Bioresource Technology, 2017, 244, 949-956.	9.6	79
12	Environmental hot spot analysis in agricultural life-cycle assessments ïż½ three case studies. Journal of Central European Agriculture, 2016, 17, 477-492.	0.6	5
13	Biogas production from reed biomass: Effect of pretreatment using different steam explosion conditions. Biomass and Bioenergy, 2016, 95, 84-91.	5.7	82
14	Environmental Effects of Steam Explosion Pretreatment on Biogas from Maize—Case Study of a 500-kW Austrian Biogas Facility. Bioenergy Research, 2016, 9, 198-207.	3.9	13
15	Steam explosion pretreatment of wheat straw to improve methane yields: Investigation of the degradation kinetics of structural compounds during anaerobic digestion. Bioresource Technology, 2015, 179, 299-305.	9.6	88
16	The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation. Bioresource Technology, 2015, 194, 7-13.	9.6	28
17	2nd International Conference Biogas Science 2014, Vienna, Austria. Energy & Fuels, 2015, 29, 4003-4004.	5.1	0
18	Potential Analysis of Agro-Municipal Residues as a Source of Renewable Energy. Bioenergy Research, 2015, 8, 1449-1456	3.9	2

Alexander Bauer

#	Article	IF	CITATIONS
19	Effects of the Antibiotics Chlortetracycline and Enrofloxacin on the Anaerobic Digestion in Continuous Experiments. Bioenergy Research, 2014, 7, 1244-1252.	3.9	24
20	Microfibrillated cellulose and cellulose nanopaper from Miscanthus biogas production residue. Cellulose, 2014, 21, 1601-1610.	4.9	16
21	Steam explosion pretreatment for enhancing biogas production of late harvested hay. Bioresource Technology, 2014, 166, 403-410.	9.6	98
22	Biogas Production from Steam-Exploded Miscanthus and Utilization of Biogas Energy and CO2 in Greenhouses. Bioenergy Research, 2013, 6, 620-630.	3.9	60
23	Potential of different Sorghum bicolor (L. moench) varieties for combined ethanol and biogas production in the Pannonian climate of Austria. Energy, 2013, 55, 107-113.	8.8	17
24	Utilization of by-products from ethanol production as substrate for biogas production. Bioresource Technology, 2011, 102, 6621-6624.	9.6	44
25	Analysis of methane yields from energy crops and agricultural by-products and estimation of energy potential from sustainable crop rotation systems in EU-27. Clean Technologies and Environmental Policy, 2010, 12, 153-161.	4.1	95
26	Detailed monitoring of two biogas plants and mechanical solid–liquid separation of fermentation residues. Journal of Biotechnology, 2009, 142, 56-63.	3.8	103
27	Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production. Journal of Biotechnology, 2009, 142, 50-55.	3.8	141