Joaquim João Sousa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9352195/publications.pdf Version: 2024-02-01

Ιολομικ Ιοθέο Sousa

#	Article	IF	CITATIONS
1	Deformation Fringes Detection in SAR interferograms Using Deep Learning. Procedia Computer Science, 2022, 196, 151-158.	1.2	5
2	Analyzing the Fine Tuning's impact in Grapevine Classification. Procedia Computer Science, 2022, 196, 364-370.	1.2	1
3	Water Hyacinth (Eichhornia crassipes) Detection Using Coarse and High Resolution Multispectral Data. Drones, 2022, 6, 47.	2.7	19
4	Vineyard classification using OBIA on UAV-based RGB and multispectral data: A case study in different wine regions. Computers and Electronics in Agriculture, 2022, 196, 106905.	3.7	20
5	VineInspector: The Vineyard Assistant. Agriculture (Switzerland), 2022, 12, 730.	1.4	5
6	Remote sensing image fusion on 3D scenarios: A review of applications for agriculture and forestry. International Journal of Applied Earth Observation and Geoinformation, 2022, 112, 102856.	0.9	8
7	Semantic segmentation of 3D car parts using UAV-based images. Computers and Graphics, 2022, 107, 93-103.	1.4	2
8	An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14, 6515-6531.	2.3	15
9	Monitoring of an embankment dam in southern Spain based on Sentinel-1 Time-series InSAR. Procedia Computer Science, 2021, 181, 353-359.	1.2	7
10	Use of L-band SAR data for Monitoring Glacier Surging next to Aru Lake. Procedia Computer Science, 2021, 181, 1131-1137.	1.2	0
11	QVigourMap: A GIS Open Source Application for the Creation of Canopy Vigour Maps. Agronomy, 2021, 11, 952.	1.3	14
12	A Versatile, Low-Power and Low-Cost IoT Device for Field Data Gathering in Precision Agriculture Practices. Agriculture (Switzerland), 2021, 11, 619.	1.4	25
13	An efficient method for acquisition of spectral BRDFs in real-world scenarios. Computers and Graphics, 2021, , .	1.4	6
14	Prototyping IoT-Based Virtual Environments: An Approach toward the Sustainable Remote Management of Distributed Mulsemedia Setups. Applied Sciences (Switzerland), 2021, 11, 8854.	1.3	3
15	Multivariate Outlier Detection in Postprocessing of Multi-temporal PS-InSAR Results using Deep Learning. Procedia Computer Science, 2021, 181, 1146-1153.	1.2	1
16	Terrace Vineyards Detection from UAV Imagery Using Machine Learning: A Preliminary Approach. Lecture Notes in Computer Science, 2021, , 16-26.	1.0	0
17	BRDF Sampling from Hyperspectral Images: A Proof of Concept. , 2021, , .		0
18	Virtual Environments & Precision Viticulture: A Case Study. , 2021, , .		0

JOAQUIM JOãO SOUSA

#	Article	IF	CITATIONS
19	Geohazards Monitoring and Assessment Using Multi-Source Earth Observation Techniques. Remote Sensing, 2021, 13, 4269.	1.8	9
20	Monitoring of Chestnut Trees Using Machine Learning Techniques Applied to UAV-Based Multispectral Data. Remote Sensing, 2020, 12, 3032.	1.8	18
21	VisWebDrone: A Web Application for UAV Photogrammetry Based on Open-Source Software. ISPRS International Journal of Geo-Information, 2020, 9, 679.	1.4	6
22	Automatic Grapevine Trunk Detection on UAV-Based Point Cloud. Remote Sensing, 2020, 12, 3043.	1.8	27
23	Digital Reconstitution of Road Traffic Accidents: A Flexible Methodology Relying on UAV Surveying and Complementary Strategies to Support Multiple Scenarios. International Journal of Environmental Research and Public Health, 2020, 17, 1868.	1.2	15
24	Smartphone Applications Targeting Precision Agriculture Practices—A Systematic Review. Agronomy, 2020, 10, 855.	1.3	61
25	Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sensing, 2020, 12, 139.	1.8	30
26	Effectiveness of Sentinel-2 in Multi-Temporal Post-Fire Monitoring When Compared with UAV Imagery. ISPRS International Journal of Geo-Information, 2020, 9, 225.	1.4	34
27	Forestry Remote Sensing from Unmanned Aerial Vehicles: A Review Focusing on the Data, Processing and Potentialities. Remote Sensing, 2020, 12, 1046.	1.8	136
28	Estimation of Leaf Area Index in Chestnut Trees using Multispectral Data from an Unmanned Aerial Vehicle. , 2020, , .		1
29	Multi-Temporal InSAR Monitoring of the Beninar Dam (SE Spain). , 2020, , .		2
30	Mysense-Webgis: A Graphical Map Layering-Based Decision Support Tool for Agriculture. , 2020, , .		2
31	Monitoring of Olive Trees Temperatures under Different Irrigation Strategies by UAV Thermal Infrared Imagery. , 2020, , .		2
32	Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Agronomy, 2019, 9, 581.	1.3	48
33	Procedural Modeling of Buildings Composed of Arbitrarily-Shaped Floor-Plans: Background, Progress, Contributions and Challenges of a Methodology Oriented to Cultural Heritage. Computers, 2019, 8, 38.	2.1	6
34	Landslide movement monitoring with ALOS-2 SAR data. IOP Conference Series: Earth and Environmental Science, 2019, 227, 062015.	0.2	2
35	UAV-Based Automatic Detection and Monitoring of Chestnut Trees. Remote Sensing, 2019, 11, 855.	1.8	54
36	mySense: A comprehensive data management environment to improve precision agriculture practices. Computers and Electronics in Agriculture, 2019, 162, 882-894.	3.7	68

#	Article	IF	CITATIONS
37	Monitoring and Analyzing Mountain Glacier Surface Movement Using SAR Data and a Terrestrial Laser Scanner: A Case Study of the Himalayas North Slope Glacier Area. Remote Sensing, 2019, 11, 625.	1.8	15
38	3D Surface velocity retrieval of mountain glacier using an offset tracking technique applied to ascending and descending SAR constellation data: a case study of the Yiga Glacier. International Journal of Digital Earth, 2019, 12, 614-624.	1.6	9
39	Classification of an Agrosilvopastoral System Using RGB Imagery from an Unmanned Aerial Vehicle. Lecture Notes in Computer Science, 2019, , 248-257.	1.0	3
40	Grapevine Varieties Classification Using Machine Learning. Lecture Notes in Computer Science, 2019, , 186-199.	1.0	0
41	Digital Ampelographer: A CNN Based Preliminary Approach. Lecture Notes in Computer Science, 2019, , 258-271.	1.0	6
42	Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sensing, 2018, 10, 1907.	1.8	54
43	Deformation monitoring of dam infrastructures via spaceborne MT-InSAR. The case of La Viñuela (Málaga, southern Spain). Procedia Computer Science, 2018, 138, 346-353.	1.2	24
44	Monitoring continuous subsidence in the Costa del Sol (Málaga province, southern Spanish coast) using ERS-1/2, Envisat, and Sentinel-1A/B SAR interferometry. Procedia Computer Science, 2018, 138, 354-361.	1.2	7
45	A rapid prototyping tool to produce 360° video-based immersive experiences enhanced with virtual/multimedia elements. Procedia Computer Science, 2018, 138, 441-453.	1.2	12
46	Multi-Temporal Insar Monitoring of the Aswan High Dam (Egypt). , 2018, , .		0
47	Deformation Monitoring of the Northern Sector of the Valencia Basin (E Spain) Using Ps-Insar (1993–2010). , 2018, , .		2
48	Deep Learning-Based Methodological Approach for Vineyard Early Disease Detection Using Hyperspectral Data. , 2018, , .		7
49	UAS-based photogrammetry of cultural heritage sites. , 2018, , .		4
50	UAS-based imagery and photogrammetric processing for tree height and crown diameter extraction. , 2018, , .		5
51	Machine learning classification methods in hyperspectral data processing for agricultural applications. , 2018, , .		6
52	Multi-Temporal Analysis of Forestry and Coastal Environments Using UASs. Remote Sensing, 2018, 10, 24.	1.8	28
53	Vineyard properties extraction combining UAS-based RGB imagery with elevation data. International Journal of Remote Sensing, 2018, 39, 5377-5401.	1.3	30
54	A pilot digital image processing approach for detecting vineyard parcels in Douro region through high-resolution aerial imagery. , 2018, , .		1

#	Article	IF	CITATIONS
55	Unmanned Aerial Systems (UAS) for environmental applications special issue preface. International Journal of Remote Sensing, 2018, 39, 4845-4851.	1.3	17
56	UAS, sensors, and data processing in agroforestry: a review towards practical applications. International Journal of Remote Sensing, 2017, 38, 2349-2391.	1.3	242
57	A cost-effective instrumented walkway for measuring ground reaction forces in rats to assess gait pattern. Measurement: Journal of the International Measurement Confederation, 2017, 103, 241-249.	2.5	2
58	A Data Mining Approach for Multivariate Outlier Detection in Postprocessing of Multitemporal InSAR Results. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 2791-2798.	2.3	14
59	Factors determining subsidence in urbanized floodplains: evidence from MTâ€InSAR in Seville (southern) Tj ETQq1	1.0.7843 1.2	14 rgBT /0∨ 6
60	Bridge Displacements Monitoring Using Space-Borne X-Band SAR Interferometry. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 205-210.	2.3	80
61	Very high resolution aerial data to support multi-temporal precision agriculture information management. Procedia Computer Science, 2017, 121, 407-414.	1.2	20
62	Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry. Remote Sensing, 2017, 9, 1110.	1.8	748
63	Application of Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) technique to Land Deformation Monitoring in Warri Metropolis, Delta State, Nigeria. Procedia Computer Science, 2016, 100, 1220-1227.	1.2	4
64	Potential of C-Band SAR Interferometry for Dam Monitoring. Procedia Computer Science, 2016, 100, 1103-1114.	1.2	17
65	Multi-Temporal InSAR Processing Comparison in Presence of High Topography. Procedia Computer Science, 2016, 100, 1181-1190.	1.2	10
66	Multi-sensor InSAR Deformation Monitoring over Urban Area of Bratislava (Slovakia). Procedia Computer Science, 2016, 100, 1127-1134.	1.2	7
67	Multi-temporal InSAR evidence of ground subsidence induced by groundwater withdrawal: the Montellano aquifer (SW Spain). Environmental Earth Sciences, 2016, 75, 1.	1.3	15
68	Potential of Multi-temporal InSAR Techniques for Structural Health Monitoring. , 2015, , .		3
69	Deformation monitoring in Zafarraya Fault and Sierra Tejeda Antiform (Betic Cordillera, Spain) using satellite radar interferometry. , 2015, , .		1
70	viStaMPS – A Collaborative Project for StaMPS-MTI Results Interpretation. Procedia Technology, 2014, 16, 842-848.	1.1	3
71	Proposal of an Information System for an Adaptive Mixed Reality System for Archaeological Sites. Procedia Technology, 2014, 16, 499-507.	1.1	9
72	Potential of Multi-temporal InSAR Techniques for Bridges and Dams Monitoring. Procedia Technology, 2014, 16, 834-841.	1.1	37

#	Article	IF	CITATIONS
73	Multi-temporal InSAR for Deformation Monitoring of the Granada and Padul Faults and the Surrounding Area (Betic Cordillera, Southern Spain). Procedia Technology, 2014, 16, 886-896.	1.1	4
74	The viStaMPS tool for visualization and manipulation of time series interferometric results. Computers and Geosciences, 2013, 52, 409-421.	2.0	5
75	Persistent Scatterer InSAR: A comparison of methodologies based on a model of temporal deformation vs. spatial correlation selection criteria. Remote Sensing of Environment, 2011, 115, 2652-2663.	4.6	111
76	PS-InSAR processing methodologies in the detection of field surface deformation—Study of the Granada basin (Central Betic Cordilleras, southern Spain). Journal of Geodynamics, 2010, 49, 181-189.	0.7	80
77	MONITORING CRITICAL INFRASTRUCTURE EXPOSED TO ANTHROPOGENIC AND NATURAL HAZARDS USING SATELLITE RADAR INTERFEROMETRY. , 0, , .		0