Fausto Cavallaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/9351828/publications.pdf

Version: 2024-02-01

56 2,868 26 52 papers citations h-index g-index

56 56 56 2612 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Carbon dioxide (CO2) emissions and economic growth: A systematic review of two decades of research from 1995 to 2017. Science of the Total Environment, 2019, 649, 31-49.	8.0	376
2	Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems. Applied Energy, 2010, 87, 496-503.	10.1	218
3	A multicriteria approach to evaluate wind energy plants on an Italian island. Energy Policy, 2005, 33, 235-244.	8.8	209
4	Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches. Sustainability, 2015, 7, 13947-13984.	3.2	194
5	Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy, 2009, 34, 1678-1685.	8.9	166
6	A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. Journal of Cleaner Production, 2019, 234, 1113-1133.	9.3	150
7	A novel approach to extended fuzzy TOPSIS based on new divergence measures for renewable energy sources selection. Journal of Cleaner Production, 2020, 257, 120352.	9.3	137
8	A comparative assessment of thin-film photovoltaic production processes using the ELECTRE III method. Energy Policy, 2010, 38, 463-474.	8.8	91
9	Assessment of concentrated solar power (CSP) technologies based on a modified intuitionistic fuzzy topsis and trigonometric entropy weights. Technological Forecasting and Social Change, 2019, 140, 258-270.	11.6	91
10	MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius. Sustainability, 2017, 9, 702.	3.2	73
11	Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS). Symmetry, 2020, 12, 1152.	2.2	70
12	Pythagorean Fuzzy SWARA–VIKOR Framework for Performance Evaluation of Solar Panel Selection. Sustainability, 2020, 12, 4278.	3.2	66
13	An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies. Sustainability, 2020, 12, 789.	3.2	65
14	Factors Influencing Consumers' Intention to Return the End of Life Electronic Products through Reverse Supply Chain Management for Reuse, Repair and Recycling. Sustainability, 2017, 9, 1657.	3.2	64
15	A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of Biomass. Sustainability, 2015, 7, 12359-12371.	3.2	58
16	Scientific Decision Framework for Evaluation of Renewable Energy Sources under Q-Rung Orthopair Fuzzy Set with Partially Known Weight Information. Sustainability, 2019, 11, 4202.	3.2	53
17	Evaluation of Combined Heat and Power (CHP) Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS. Sustainability, 2016, 8, 556.	3.2	48
18	A Hybrid Intuitionistic Fuzzy-MEREC-RS-DNMA Method for Assessing the Alternative Fuel Vehicles with Sustainability Perspectives. Sustainability, 2022, 14, 5463.	3.2	48

#	Article	IF	Citations
19	A multi-stage method to predict carbon dioxide emissions using dimensionality reduction, clustering, and machine learning techniques. Journal of Cleaner Production, 2020, 275, 122942.	9.3	47
20	Application of Structural Equation Modeling (SEM) to Solve Environmental Sustainability Problems: A Comprehensive Review and Meta-Analysis. Sustainability, 2017, 9, 1814.	3.2	45
21	Concentrated solar power (CSP) hybridized systems. Ranking based on an intuitionistic fuzzy multi-criteria algorithm. Journal of Cleaner Production, 2018, 179, 407-416.	9.3	44
22	A Hesitant Fuzzy Combined Compromise Solution Framework-Based on Discrimination Measure for Ranking Sustainable Third-Party Reverse Logistic Providers. Sustainability, 2021, 13, 2064.	3.2	39
23	The Role of Process Innovation between Firm-Specific Capabilities and Sustainable Innovation in SMEs: Empirical Evidence from Indonesia. Sustainability, 2018, 10, 2244.	3.2	34
24	A Fuzzy Gain-Based Dynamic Ant Colony Optimization for Path Planning in Dynamic Environments. Symmetry, 2021, 13, 280.	2.2	33
25	An Integrated Single-Valued Neutrosophic Combined Compromise Solution Methodology for Renewable Energy Resource Selection Problem. Energies, 2021, 14, 4594.	3.1	32
26	A Group Decision Framework for Renewable Energy Source Selection under Interval-Valued Probabilistic linguistic Term Set. Energies, 2020, 13, 986.	3.1	30
27	Examination of the Sustainable Rural Tourism Potential of the BrÄko District of Bosnia and Herzegovina Using a Fuzzy Approach Based on Group Decision Making. Sustainability, 2021, 13, 583.	3. 2	30
28	A q-Rung Orthopair Fuzzy FUCOM Double Normalization-Based Multi-Aggregation Method for Healthcare Waste Treatment Method Selection. Sustainability, 2022, 14, 4171.	3.2	30
29	Sustainable Assessment of Aerosol Pollution Decrease Applying Multiple Attribute Decision-Making Methods. Sustainability, 2016, 8, 586.	3.2	28
30	A similarity measure-based Pythagorean fuzzy additive ratio assessment approach and its application to multi-criteria sustainable biomass crop selection. Applied Soft Computing Journal, 2022, 125, 109201.	7.2	26
31	Algorithm Selection for Edge Detection in Satellite Images by Neutrosophic WASPAS Method. Sustainability, 2020, 12, 548.	3.2	25
32	An Integrated Multi-Criteria System to Assess Sustainable Energy Options: An Application of the Promethee Method. SSRN Electronic Journal, 2005, , .	0.4	24
33	The Impact of Greening Tax Systems on Sustainable Energy Development in the Baltic States. Energies, 2018, 11, 1193.	3.1	22
34	Application of Sustainability Principles for Harsh Environment Exploration by Autonomous Robot. Sustainability, 2019, 11, 2518.	3.2	20
35	Measuring Country Sustainability Performance Using Ensembles of Neuro-Fuzzy Technique. Sustainability, 2018, 10, 2707.	3.2	19
36	An approach to determining customer satisfaction in traditional Serbian restaurants. Entrepreneurship and Sustainability Issues, 2019, 6, 1127-1138.	1.1	18

#	Article	IF	CITATIONS
37	Analyzing the Factors Enabling Green Lean Six Sigma Implementation in the Industry 4.0 Era. Sustainability, 2022, 14, 3450.	3.2	17
38	A Life Cycle Assessment (LCA) of a Paraboloidal-Dish Solar Thermal Power Generation System. , 2006, , .		16
39	Electric load analysis using an artificial neural network. International Journal of Energy Research, 2005, 29, 377-392.	4.5	15
40	The Multi-Aspect Criterion in the PMADM Outline and Its Possible Application to Sustainability Assessment. Sustainability, 2018, 10, 4451.	3.2	15
41	The social acceptance of nuclear fusion for decision making towards carbon free circular economy: Evidence from Czech Republic. Technological Forecasting and Social Change, 2021, 163, 120477.	11.6	15
42	A Novel Image Processing Approach to Enhancement and Compression of X-ray Images. International Journal of Environmental Research and Public Health, 2021, 18, 6724.	2.6	13
43	The COVID-19 Pandemic and Nature-Based Tourism, Scenario Planning Approach (Case Study of) Tj ETQq1 1 0.	784314 rgB1	Γ <u>(O</u> verlock
44	A Bibliometric Review on Decision Approaches for Clean Energy Systems under Uncertainty. Energies, 2021, 14, 6824.	3.1	8
45	Clean energy selection for sustainable development by using entropy-based decision model with hesitant fuzzy information. Environmental Science and Pollution Research, 2022, 29, 42973-42990.	5.3	7
46	A New Approach to the Viable Ranking of Zero-Carbon Construction Materials with Generalized Fuzzy Information. Sustainability, 2022, 14, 7691.	3.2	7
47	Sustainability Assessment of Solar Technologies Based on Linguistic Information. Green Energy and Technology, 2013, , 3-25.	0.6	6
48	Environmental Assessment of a Solar Tower Using the Life Cycle Assessment (LCA). Smart Innovation, Systems and Technologies, 2019, , 621-628.	0.6	3
49	Design and Implementation of a Fuzzy Inference Model for Mapping the Sustainability of Energy Crops. Advances in Environmental Engineering and Green Technologies Book Series, 2015, , 47-68.	0.4	3
50	Assessment of Nuclear Energy Competiveness Using a Multi-Criteria Fuzzy Approach. International Journal of Energy Optimization and Engineering, 2013, 2, 21-36.	0.6	3
51	Development of a Index for Sustainable Energy Technologies Based on an Intelligent Fuzzy Expert System. Studies in Systems, Decision and Control, 2020, , 137-143.	1.0	3
52	Fuzzy PROMETHEE for the Environmental Quality Assessment of Energy Dedicated Crops. Atlantis Computational Intelligence Systems, 2012, , 231-250.	0.5	2
53	An Integrated Fuzzy Goal Programmingâ€"Theory of Constraints Model for Production Planning and Optimization. Sustainability, 2021, 13, 12728.	3.2	1
54	An extended fuzzy divergence measure-based technique for order preference by similarity to ideal solution method for renewable energy investments., 2021,, 469-490.		0

#	Article	IF	CITATIONS
55	A Fuzzy Inference System to Evaluate the Environmental Effects of Electricity Generation Technologies. Springer Proceedings in Energy, 2015, , 227-233.	0.3	0
56	Design and Implementation of a Fuzzy Inference Model for Mapping the Sustainability of Energy Crops. , 2017, , 657-678.		0